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Abstract

Introduction

Dental pulp, the only soft tissue in the tooth, plays a critical 
role in sustaining tooth homeostasis. However, this tissue 
is vulnerable to various stimuli, including infections, 

iatrogenic causes, and trauma.(1) If not treated properly, 
pulp damage can lead to dentinogenesis impairment and 
irreversible pulpitis or even pulp necrosis, since this tissue 
has a limited self-repair capacity.(2)
 Damaged pulp can be treated by several procedures. 
Root canal therapy, the most used endodontic procedure, 
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R E V I E W  A R T I C L E

BACKGROUND: Pulp damage can lead to 
dentinogenesis impairment, irreversible pulpitis, 
or pulp necrosis. Despite being the most used 

endodontic procedure to treat damaged pulp, root canal 
therapy only results in nonvital teeth which are prone to 
fractures and secondary infection. Pulp-dentin regeneration 
has a potential to regenerate structure similar to normal 
pulp-dentin complex, and can be achieved by combining 
dental stem cells, scaffold, and signaling molecules. This 
article reviews the role of various types of dental stem cells, 
scaffolds, signaling molecules, and their combinations in 
regenerating pulp-dentin complex. 

CONTENT: Dental pulp stem cell (DPSC), stem cell from 
human exfoliated deciduous teeth (SHED), and dental 
follicle stem cell (DFSC) were reported to regenerate pulp-
dentin complex in situ. SHED might be more promising than 
DPSCs and DFSCs for regenerating pulp-dentin complex, 
since SHED have a higher proliferation potential and 
higher expression levels of signaling molecules. Scaffolds 
have characteristics resembling extracellular matrix, thus 

providing a suitable microenvironment for transplanted 
dental stem cells. To accelerate the regeneration process, 
exogenous signaling molecules are often delivered together 
with dental stem cells. Scaffolds and signaling molecules 
have different regenerative potential, including induction of 
cell proliferation and migration, formation of pulp- and/or 
dentin-like tissue, as well as angiogenesis and neurogenesis 
promotion.

SUMMARY: Combinations of dental stem cells, scaffold, 
and signaling molecules are important to achieve the 
functional pulp-dentin complex formation. Current trends 
and future directions on regenerative endodontics should 
be explored. The right combination of dental stem cells, 
scaffold, and signaling molecules could be determined 
based on the patients’ characteristics. Incomplete pulp-
dentin regeneration could be overcome by applying dental 
stem cells, scaffold, and/or signaling molecules in multiple 
visits.

KEYWORDS: pulp-dentin regeneration, regenerative 
endodontics, dental stem cells, scaffold, signaling molecules
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smaller in size, located in sites that are relatively not easy to 
be accessed, and contain small amounts of cells, DFSCs are 
difficult to be obtained and distinguished from other types 
of dental stem cells.(4) 
 DPSCs have been reported to have a higher proliferation 
rate compared with bone marrow mesenchymal stem 
cell (BMMSC), while SHED have a higher proliferation 
rate than DPSCs.(33) It has been demonstrated that the 
proliferation rate of DFSCs is notably higher than DPSCs.
(34) Moreover, in a recent study, DFSCs were shown to 
have a higher proliferation rate than SHED.(35) Thus, 
DFSCs might have the highest proliferation rate, followed 
by SHED and DPSCs. High proliferation of DFSCs implies 
that they are more immature, since this type of stem cells 
are isolated from developing tissues (36), and consequently 
they might be more plastic compared with other dental 
stem cells. In summary, DPSCs, SHED, and DFSCs vary in 
their proliferation rates, which could be determined by the 
developmental stages of the stem cell sources.
 Mesenchymal stem cell (MSC), including DPSCs, 
SHED and DFSCs have been reported to modulate the 
immune system through several mechanisms.(37) DPSCs 
have been demonstrated to modulate the adaptive and innate 
immune responses through interaction with B cells, T cells, 
macrophages, dendritic cells (DCs), and natural killer (NK) 
cells. For instance, the production of B cell immunoglobulin 
and proliferation of T cell proliferation are inhibited in co-
culture of peripheral blood mononuclear cells (PBMCs) 
and DPSCs. Transforming growth factor (TGF)-β secreted 
by DPSCs plays a crucial role in this inhibition and the 
addition of interferon (IFN)-γ to DPSCs culture enhances 
the inhibitory effects.(38) DPSCs markedly decrease CD4+ 

and CD8+ T cell proliferation, irrespective of hypoxia-
inducible factor (HIF)-1α expression level in DPSCs. 
However, overexpression of HIF-1α increases the DPSCs 
inhibitory effect on DCs proliferation. Expression of HIF-1α 
by DPSCs also enhances the recruitment and differentiation 
of macrophages with M2 characteristics. Furthermore, 
NK cell-mediated cytotoxicity is suppressed in HIF-1α-
overexpressed DPSCs.(39) 
 SHED have been shown to modulate T cells, 
macrophages and DCs. This type of stem cell restrains the 
differentiation of T helper (Th) 17 cells, and has greater 
immunomodulatory potential compared with BMMSCs.
(40) SHED have been reported to promote phenotypic 
polarization of macrophage toward M2-like phenotype 
in transwell co-culture systems and increase the number 
of macrophages with M2-like phenotype in rat model of 
periodontitis.(41) A study demonstrates that SHED affect 

Based on the locations, dental stem cells are classified 
as dental pulp stem cell (DPSC), stem cells from human 
exfoliated deciduous teeth (SHED), stem cells from the 
apical papilla (SCAP), dental follicle stem cell (DFSC), 
periodontal ligament stem cell (PDLSC).(5,6) DPSCs, 
SHED, and DFSCs were reported to have potential in 
regenerating pulp-dentin complex in situ, both in animal 
models (Table 1) and human subjects (Table 2).

Cell Number, Proliferation Rate, and Immunomodulatory 
Properties of DPSCs, SHED and DFSCs
DPSCs, SHED and DFSCs are different in several aspects, 
including the number of cells isolated from the tissues, 
proliferation rate, and immunomodulatory mechanisms. 
DPSCs and SHED have relatively high cell numbers in 
original cultures compared with DFSCs, because dental 
pulp, both in permanent and deciduous teeth, have relatively 
high amounts of stem cells compared with dental follicles 
of developing tooth germ. Since dental follicle tissues are 

replaces inflamed or injured pulp with bioinert material 
fillings. However, this procedure results in nonvital teeth, 
which are prone to fractures and secondary infection.
(3) Regenerative endodontic treatment or pulp-dentin 
regeneration is an alternative procedure based on the 
tissue engineering principle. Pulp-dentin regeneration is 
more holistic than other endodontic procedures since this 
procedure has a potential to regenerate structure similar 
to normal pulp-dentin complex. The main goals of pulp 
regeneration are pulp-dentin complex formation as well as 
angiogenesis and neurogenesis in the newly regenerated 
pulp.(4)
 Tissue engineering combines dental stem cells, 
scaffold, and signaling molecules to mimic a suitable 
microenvironment for regenerating pulp-dentin complex. 
Numerous studies have been established to examine the 
effects of dental stem cells, scaffold, signaling molecules, 
and their combinations in pulp regeneration, providing a 
new insight in the field of regenerative dentistry and opening 
a great opportunity for further clinical applications. This 
article reviews the role of various types of dental stem cells, 
scaffolds, signaling molecules, and their combinations in 
regenerating pulp-dentin complex. The right combination of 
these components could increase pulp-dentin regeneration 
therapy efficiency. 

Role of Dental Stem Cells in 
Regenerative Endodontics
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Table 1. Regenerative potential of DPSCs, SHED, and DFSCs in animal model of pulp-dentin regeneration.

Pulp- and/or Dentin-like Tissue Angiogenesis Neurogenesis

DPSC Dog Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: DSPP

Histology:
Blood vessels in regenerated pulp

N/A (7-10)

Mini-pig Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: DSP, 
DMP1, and BSP

Histology:
Blood vessels in regenerated pulp

N/A (11)

Ferret Histology:
Formation of osteodentin mixed with 
loose connective tissue.

N/A N/A (12)

Rat Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: DMP1, 
DSPP, DSP, and OPN

Histology:
Blood vessels in regenerated pulp

Positive immunostaining: CD31

N/A (13-15)

DPSC CD31- Dog Histology:
- Pulp tissue regeneration
- Dentin formation

Gene expression: MMP20, 
syndecan 3, TRH-DE

Positive immunostaining: BS-1 
lectin

Positive 
immunostaining: 
PGP9.5

(16)

DPSC CD105+ Dog Histology:
Pulp tissue regeneration

Histology:
Blood vessels in regenerated pulp

N/A (17)

Mobilized DPSC Dog Histology:
- Pulp tissue regeneration
- Dentin formation

Gene expression: tenascin C , 
syndecan 3 , TRH-DE , MMP20 , 
DSPP

Positive immunostaining: TRH-DE

MRI:
Signal intensity of transplanted teeth 
was similar compared with that in 
normal teeth.

Positive immunostaining: BS-1 
lectin

Laser Doppler flowmetry:
Blood flow in regenerated pulp 
tissue is similar compared to that in 
normal pulp tissue.

Positive 
immunostaining: 
PGP9.5

Electric pulp test:
Positive pulp sensibility 
response

(18-25)

hpDPSC Dog Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: BS-1 
lectin

Positive 
immunostaining: 
PGP9.5

(25,26)

hpDPSC from 
deciduous teeth

Dog Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: BS-1 
lectin

Positive 
immunostaining: 
PGP9.5

(26)

SHED Mini-pig Histology:
- Pulp tissue regeneration
- Dentin formation

Histology:
Blood vessels in regenerated pulp

Positive immunostaining: CD31

Positive 
immunostaining: NeuN, 
neurofilament, CGRP, 
and TRPV1

(27,28)

DFSC Mini-pig Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: DMP-1, 
DSPP, COL1, COL3

N/A N/A (29)

ReferenceType of Dental 
Stem Cells

Regenerative Potential
Species

N/A: Not applicable; DSPP: Dentin sialophosphoprotein; DSP: Dentin sialoprotein; DMP1: Dentin matrix acidic phosphoprotein 
1; BSP: Bone sialoprotein; OPN: Osteopontin; MMP20: Matrix metalloproteinase 20; Thyrotropin-releasing hormone-degrading 
enzyme: TRH-DE; BS-1 lectin: Bandeiraea simplicifolia lectin 1; PGP9.5: Protein gene product 9.5; NeuN: Neuronal nuclei; 
CGRP: Calcitonin gene-related peptide; TRPV1: Transient receptor potential cation channel subfamily V member 1; COL1: 
Collagen type I; COL3: Collagen type III.
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Pulp- and/or Dentin-like Tissue Angiogenesis Neurogenesis

DPSC CBCT:
- Formation of dentin bridge
- Apical canal calcification

Laser Doppler flowmetry:
Blood perfusion in the transplanted 
tooth with low mean perfusion unit.

N/A (30)

Mobilized DPSC MRI:
Complete pulp regeneration

CBCT:
- Formation of lateral dentin
- Decrease in dental pulp volume

N/A Electric pulp test:
Positive pulp sensibility response

(31)

hpDPSC MRI:
Complete pulp regeneration

CBCT:
- Formation of lateral dentin
- Decrease in dental pulp volume

N/A Electric pulp test:
Positive pulp sensibility response

(32)

SHED Histology:
Regenerated pulp with odontoblast 
layer, connective tissue, and blood 
vessels.

CBCT:
Increase in dentin thickness

Laser Doppler flowmetry:
An increase in vascular formation as 
indicated by high perfusion units.

Positive immunostaining: NeuN

Electric pulp test:
Positive pulp sensibility response

(27)

ReferenceType of Dental 
Stem Cells

Regenerative Potential

Table 2. Regenerative potential of DPSCs, SHED, and DFSCs in case reports and clinical trials of pulp-dentin regeneration.

N/A: Not applicable; CBCT: Cone beam computed tomography; MRI: Magnetic resonance imaging; NeuN: Neuronal nuclei.

differentiation, maturation, and T cell activation ability 
of DCs. The same study also shows that SHED augment 
T regulatory (Treg) cell induction ability of DCs. SHED-
treated DCs have a lower level of IFN-γ, tumor necrosis 
factor (TNF)-α and interleukin (IL)-2, as well as higher 
level of IL-10.(42) 
 DFSCs have immunomodulatory properties 
toward T cells and macrophages. A study demonstrates 
that DFSCs increase the number of Treg cells as well 
as suppress CD4+ T cell proliferation via TGF-β and 
indoleamine 2,3-dioxygenase (IDO) pathways.(43) In 
lipopolysaccharide (LPS)-induced macrophage, this type of 
stem cell is involved in phenotypic polarization to M2 by 
secreting thrombospondin-1 and TGF-β3.(44) Therefore, 
the immunomodulatory activities of DPSCs are exerted on 
B cells, T cells, macrophages, DCs, and NK cells. SHED 
regulates T cells, macrophages and DCs, while DFSCs 
show immunomodulatory activities toward T cells and 
macrophages.

DPSCs, SHED and DFSCs Play a Crucial Role in 
Regenerating Pulp-dentin Complex
Dental stem cells are involved in pulp-dentin complex 
formation in situ. When transplanted into an emptied root 
canal or a tooth construct, DPSCs, SHED, and DFSCs 
generate tissue that has characteristics resembling dental 
pulp. Several biomarkers have been used to detect the 

presence of the regenerated pulp, such as thyrotropin-
releasing hormone-degrading enzyme (TRH-DE), syndecan 
3, and tenascin. Furthermore, magnetic resonance imaging 
(MRI) can also be utilized to assess pulp regeneration 
by dental stem cells in the root canal (Table 1, Table 2). 
After pulpectomy, the signal intensity of MRI is relatively 
low compared  with  those  in  the  normal  teeth.  The 
signal intensity in the pulpectomized tooth then increases 
several days after transplantation and keeps decreasing 
until it is similar to normal pulp, indicating complete pulp 
regeneration.(21)
 Formation of dentin-like structure by DPSCs, SHED, 
and DFSCs has also been documented by the generation of 
dentin matrix deposition that causes dentin thickening and the 
presence of odontoblast-like cells on the canal dentinal walls 
which express both specific and non-specific odontoblast 
markers. Specific odontoblasts markers include dentin 
sialoprotein (DSP), dentin sialophosphoprotein (DSPP) and 
dentin matrix acidic phosphoprotein (DMP) 1 (13-15), while 
non-specific odontoblasts markers include bone sialoprotein 
(BSP) and osteopontin (OPN).(11,14) There are several 
viewpoints regarding the use of non-specific odontoblasts 
markers for detecting newly regenerated dentin. Some 
investigators consider that enhanced expression of these 
markers suggests greater dentin regeneration potential 
(8,10,14,15,28) since they are involved in dentin formation.
(45) Other investigators consider these markers as 
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osteogenic markers instead of odontogenic markers.(29,46) 
The increase in the expression of these markers implies 
that the regenerated structure has similar characteristics 
with bone instead of dentin.(46) Therefore, these markers 
should not be more strongly expressed in dentin than the 
expression of odontoblast-specific markers.(11,14,29) 
Besides detection of odontoblast markers, cone beam 
computed tomography (CBCT) can be used to assess dentin 
formation (Table 2), which is demonstrated by a reduction in 
low-density areas, indicating a decrease in pulp volume and 
an increase in dentin thickness.(32) Studies that use ectopic 
and semiorthotopic pulp-dentin regeneration models are 
not included in Table 1, since these models do not provide 
similar conditions as the human oral cavity.(4) 
 The research that assesses the ability of DFSCs 
to form pulp-dentin complex is more limited than those 
conducted using DPSCs and SHED. DFSCs are usually used 
to simultaneously regenerate pulp-dentin and cementum-
periodontal complexes.(29) This may be caused by the 
tendency of DFSCs to regenerate periodontal tissue and 
tooth root rather than pulp-dentin complex. Transplantation 
of treated dentin matrix that contains DFSCs regenerates 
periodontal-like tissue in subcutaneous space and 
cementum-like tissue in the outer surface of dentin.(47) 
Moreover, combination of DFSCs and treated dentin matrix 
which is transplanted to the alveolar fossa of rats has a 
potential to induce root formation.(48) Thus, DFSCs are 
better to use in periodontal tissue and root regeneration, 
although they might also have a potential to regenerate 
pulp-dentin complex. Despite the large number of studies 
that explore the regenerative potential of DPSCs, SHED 
might be more promising than DPSCs, since SHED have 
a higher proliferation potential (33) and higher expression 
levels of signaling molecules which may contribute to the 
pulp-dentin regeneration.(49) 

DPSCs, SHED and DFSCs are Involved in Angiogenesis
Angiogenesis has been reported to occur in pulp-like 
tissue regenerated by DPSCs and SHED in situ. There are 
limited studies that demonstrate the involvement of DFSCs 
in the angiogenesis process in regenerated pulp tissue 
(Table 1). The angiogenic potential of DFSCs has been 
reported to be lower compared with DPSCs and SCAP.
(50) The new vessels provide oxygen and nutrition to the 
newly regenerated pulp, thus supporting the survival of the 
transplanted stem cells and facilitating further regeneration 
process. Blood vessels in the regenerated pulp can be 
detected using immunostaining of Griffonia (Bandeiraea) 
simplicifolia lectin 1 (BS-1 lectin) and CD31 (Table 1).

 In addition, laser Doppler flowmetry can be used 
to assess angiogenesis and analyze the blood flow in the 
regenerated pulp tissue, as demonstrated by several studies. 
Blood flow in the pulp tissue regenerated by DPSCs is 
not remarkably different compared with that in normal 
pulp tissue, implying complete functional angiogenesis.
(18) Human tooth with symptomatic irreversible pulpitis 
which is treated with DPSCs and normal tooth have low 
mean perfusion units. Blood perfusion in both teeth is 
indicated by pulse characteristics.(30) In addition, SHED-
transplanted teeth experience an increase in the average of 
vascular formation.(27)
 DPSCs, SHED, and DFSCs are involved in angiogenesis 
through differentiation toward endothelial cells (28) or 
angiogenic factors secretion. Several angiogenic factors 
that are expressed by these stem cells includes vascular 
endothelial growth factor (VEGF) (16,28,29), HIF1A (28), 
granulocyte-monocyte colony-stimulating factor (GM-
CSF), matrix metalloproteinase 3 (MMP3) (16), selectin E 
(SELE) (18), angiopoietin (ANGPT), and von Willebrand 
factor (VWF).(15) These factors stimulate vessel formation 
by modulating local endothelial cells in a paracrine manner.
(16) Several subsets of DPSCs have been reported to secrete 
angiogenic factors but they do not incorporate to the newly 
formed blood vessels, such as dental pulp CD31- side 
population cells (16) and granulocyte colony-stimulating 
factor (G-CSF) mobilized DPSCs.(18,51)
 Angiogenesis in pulp-like tissue can be induced further 
by culturing dental stem cells under hypoxic conditions. 
Hypoxia mimics conditions in the dental pulp cavity (52), 
which increases the expression of HIF1A. Upregulation 
of this transcriptional factor activates the expression 
of angiogenesis-related genes.(25) Hypoxia culture on 
nanofibrous spongy microspheres increases angiogenesis 
potential of human DPSCs (hDPSCs) as indicated by 
more CD31-stained blood vessels in the regenerated pulp-
like tissues.(13) Another research demonstrates that the 
expression levels of HIF1A in hypoxia preconditioned 
DPSCs (hpDPSCs) are two times higher compared with 
those in mobilized DPSCs, while VEGF expression levels in 
both DPSCs are similar. hpDPSCs have been demonstrated 
to have a similar neovascularization potential compared 
to mobilized DPSCs.(25) DPSCs from permanent and 
deciduous teeth that are cultured under hypoxic conditions 
have similar expression levels of VEGF and GM-CSF, as 
well as in situ neovascularization potential.(26) Furthermore, 
co-culture of dental stem cells with endothelial cells has 
also been demonstrated to enhance angiogenesis. Crosstalk 
between transplanted stem cells with endothelial cells has 
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been shown to increase the expression of angiogenic factors 
in both cells by activating specific pathways, such as nuclear 
factor κB (NF-κB).(53) 

DPSCs, SHED and DFSCs are Involved in Neurogenesis
DPSCs, SHED, and DFSCs have a potential to induce 
neurogenesis, as shown by the studies that reported the 
presence of nerve fibers in pulp-like tissue after stem cell 
transplantation. Newly formed nerve fibers in orthotopic pulp 
regeneration models are detected using immunostaining of 
protein gene product 9.5 (PGP9.5), neuronal nuclei (NeuN), 
neurofilament, calcitonin gene-related peptide (CGRP), 
and transient receptor potential cation channel subfamily 
V member 1 (TRPV1) (Table 1). The expression of other 
neurological markers, such as sodium voltage-gated channel 
alpha subunit 1 (SCN1A) and neuromodulin genes (16,18), 
as well as tubulin-βIII (TUBB3) (29), nestin, and transient 
receptor potential cation channel subfamily M member 8 
(TRPM8) protein (27), has also been detected in cultured 
or subcutaneously implanted stem cells. Electric pulp test 
is another common technique utilized for detecting nerve 
fibers in regenerated pulp tissue (Table 1, Table 2).
 Mechanisms of neurogenesis induction are similar to 
the angiogenesis induction by DPSCs, SHED, and DFSCs. 
These types of stem cells have been reported to differentiate 
toward neural cells.(54,55). In addition, various neurogenic 
factors are expressed by DPSCs and SHED, including 
nerve growth factor (NGF), glial cell-derived neurotrophic 
factor (GDNF), brain-derived neurotrophic factor (BDNF), 
neuropeptide Y (NPY), and neurotrophin 3 (NTF3).(16,56) 
Investigations on neurogenic factors secreted by DFSCs 
are still limited. Hypoxic conditions could enhance the 
expression of neurogenic factors in dental stem cells. 
NGF and BDNF expression levels are notably higher in 
hpDPSCs compared with those in mobilized DPSCs, but 
GDNF expression level is lower. It has been reported that 
hpDPSCs have a similar reinnervation potential compared 
to mobilized DPSCs.(25) A recent study revealed that 
DPSCs from deciduous teeth had a markedly higher mRNA 
expression of BDNF compared with those obtained from 
permanent teeth, but not NGF or GDNF. However, both 
of these stem cells had a similar BDNF protein expression 
level and reinnervation potential.(26)

Factors Affecting the Regenerative Potential of DPSCs, 
SHED and DFSCs in Pulp-Dentin Complex Regeneration
Several factors may affect the regenerative potential of 
DPSCs, SHED, and DFSCs. Aging has been reported to 
cause the reduction of DPSCs regenerative potential. An 

animal study demonstrates that about 60% of root canal 
area is covered by pulp-dentin complex after 120 days in 
teeth of aged dogs (5–6 years of age) transplanted with 
autologous mobilized DPSCs.(19) This percentage is much 
lower than that in young dogs (8-10 months of age), which 
shows regeneration volume of more than 90% after 60 days.
(18) SHED, which are obtained from dental pulp of younger 
individuals, have a higher expression of neuronal markers 
when compared with adult DPSCs, suggesting lower 
neurogenic potential in DPSCs.(57) In dental follicle cells, 
cell senescence is correlated with a decrease in osteogenic 
potential and lower WNT5A expression, although the role of 
WNT5A may be less significant in regulating the expression 
of osteogenic markers.(58)
 Dental diseases, such as caries, are reported to have 
no effect or even increase regenerative potential of dental 
stem cells. SHED obtained from carious deciduous teeth 
has a similar osteogenic potential compared to those that 
are obtained from sound deciduous teeth.(59) Meanwhile, 
DPSCs isolated from teeth with deep caries have greater 
proliferation and angiogenesis abilities, as well as higher 
expression of odontoblast differentiation markers.(60,61)
 Dental stem cells can differentiate not only to 
odontoblasts and dental pulp cells, but also to other types of 
cells, since it has been reported that transplantation of DPSCs 
regenerates periodontal ligament-, bone-, and cementum-
like tissues instead of pulp-like tissue. Signals sent from 
tissues surrounding the root canal, such as alveolar bone and 
periodontal ligament, might affect the fate of transplanted 
dental stem cells.(46) Taken together, the success of stem 
cells-mediated pulp-dentin complex regeneration may be 
affected by aging, dental diseases, and signals sent from the 
surrounding tissues. 

Recent Advances on the Use of Dental Stem Cells in 
Regenerative Endodontics
Dental stem cells have been demonstrated to regenerate 
functional pulp-dentin complex in human subjects in several 
studies, most of them using autologous dental stem cells 
(Table 2). Combination of autologous mobilized DPSCs 
and good manufacturing practice (GMP)-grade G-CSF are 
transplanted into the teeth of five adult irreversible pulpitis 
patients.(31) Mobilized DPSCs are subsets of DPSCs 
isolated through G-CSF-induced cell mobilization.(51) Four 
weeks after transplantation, four patients show a positive 
electric pulp test result. Lateral dentin formation is observed 
in three patients as shown by CBCT imaging. Interestingly, 
all patients do not experience any adverse events or toxicity 
caused by mobilized DPSCs transplantation.(31)
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 Successful pulp regeneration using autologous DPSCs 
obtained from inflamed pulp has also been reported. DPSCs 
are obtained from the permanent tooth with symptomatic 
irreversible pulpitis. These stem cells are implanted with 
leukocyte platelet-rich fibrin (L-PRF) obtained from the 
patient’s blood into the root canal of the same tooth. After 
36 months, no tenderness to palpation or percussion, and 
no adverse events are observed. Laser Doppler flowmetry 
results demonstrate that both untreated and DPSCs-
implanted teeth have pulse characteristics, implying blood 
perfusion in the teeth, although the mean perfusion units in 
those teeth are low.(30)
 Transplantation of autologous hpDPSCs seeded on 
atelocollagen scaffold containing G-CSF in multirooted 
molars of two patients affected by symptomatic or 
asymptomatic irreversible pulpitis has been successfully 
demonstrated. No periapical radiolucency is observed 
by CBCT and radiographic examination after 48 weeks. 
Moreover, no adverse events or systemic toxicity are 
experienced by these patients as shown by the results of 
clinical and laboratory evaluation.(32)
 SHED transplantation into injured human teeth 
markedly increases dentin thickness and root length, as 
well as reduces apical foramen width compared with the 
apexification procedure. An increase in vascular formation 
is observed in SHED transplantation group. In contrast, 
a decrease in vascular formation is observed in the 
apexification group. Teeth transplanted with SHED show a 
significantly higher mean decrease in sensation than those 
treated with apexification procedure. No adverse events are 
observed at 24 months after transplantation.(27)
 Besides  dental  stem  cells,  induced  pluripotent 
stem cell  (iPSC),  which  is  obtained  by  introducing 
reprogramming factors including octamer-binding 
transcription factor 4 (Oct4), Kruppel-like factor 4 (Klf4), 
sex determining region Y-box 2 (Sox2), l-myc, c-myc, and 
Lin28 to somatic cells, can also be used in pulp-dentin 
regeneration.(62-65) Stem cells, such as DPSCs (63), and 
differentiated cells, such as fibroblasts (64) could be used to 
generate iPSCs. Generation of odontoblasts-like cells could 
be performed by directly inducing iPSCs.(63) In addition, 
iPSCs could be induced toward iPSCs-derived neural crest-
like cells (iNCLCs), which in turn can be differentiated 
further into odontoblasts-like cells.(63,64) Differentiation 
to odontoblasts and generation of pulp-like tissue from 
iPSCs can be induced by transfection of specific genes (62), 
as well as addition of exogenous growth factors (63,64) and 
scaffolds (64).

 Whole tooth regeneration is another promising 
advance in endodontic therapy. This method relies on the 
interaction between the dental mesenchyme and the dental 
epithelium to generate a bioengineered tooth bud.(66) Cells 
of the dental mesenchyme and the dental epithelium can be 
isolated from embryonic (67-69) or postnatal (67) dental 
tissues. Autologous (67), allogeneic (69), and xenogeneic 
(68) cells have been used in tooth bud production. Both types 
of cells are combined in collagen gel drop and cultured in 
vitro (67-69) or seeded in a scaffold (70). The bioengineered 
tooth bud is then transplanted to the jaw bone to regenerate 
the new tooth.

Along with dental stem cells, the use of biomaterial scaffold 
(bioscaffold) also becomes a notable consideration in 
regenerative endodontics, especially for the formation of 
dental tissues. These biomaterials are expanded in vitro 
to environmentally mimic the in vivo condition.(71,72) 
Ideal scaffolds for regenerative endodontic therapy should 
resemble the extracellular matrix (ECM) of pulp-dentin 
complex in terms of dimensional stability, sufficient porosity 
with adequate particle size, similar biodegradability rate, as 
well as physical and mechanical strength (71,73,74), since 
biocompatibility is highly important to prevent adverse 
tissue reactions.(75)
 Bioscaffold for regenerative endodontic therapy 
includes broad ranges of applications and sources. Based 
on the scaffold geometry, the existing biological constructs 
are porous scaffolds, fibrous scaffolds, microsphere/
microparticle scaffolds, and solid free-form scaffolds.(76) 
Meanwhile, based on the material sources, bioscaffold 
can be classified into blood-derived scaffolds, natural-
derived biomaterial scaffolds, and synthetic biomaterial 
scaffolds. Each scaffold has different regenerative properties 
and potential, including pulp and dentin regeneration, 
vascularization, as well as stem cell proliferation and 
differentiation (Table 3).

Blood-derived Scaffolds
Induction of bleeding and formation of intracanal blood-
clot (BC) in the root canal is a well-known used method 
in regenerative endodontic therapy that applies the strategy 
of bioscaffold for pulp-dentin regeneration and dental 
tissue ingrowth.(78,106) BC is a gel-like lump obtained 

Role of Biomaterial Scaffolds in 
Regenerative Endodontic Therapy
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N/A: Not applicable; DMP1: Dentin matrix acidic phosphoprotein 1; DSPP: Dentin sialophosphoprotein; COL1: Collagen type I; 
OPN: Osteopontin; RUNX2: Runt-related transcription factor 2; OCN: Osteocalcin; SPP1: Secreted phosphoprotein 1; COL1A1: 
Collagen type I alpha 1; GDF5: Growth differentiation factor 5.

Pulp-dentin Regeneration Vascularization

BC - Increasing root length and thickness
- Increasing dental wall thickness
- Improving bone density
- Narrowing apical width 
- Healing the periapical lesion

- Improving vitality response 
(blood pump)

(77-86)

PRP - Increasing root length and thickness
- Increasing dental wall thickness
- Improving bone density 
- Narrowing apical width
- Healing the periapical lesion

- Improving vitality response 
(blood pump)

(77,78,80-83,
85-87)

PRF - Increasing root length and thickness
- Increasing dental wall thickness 
- Improving bone density
- Narrowing apical width 
- Healing the periapical lesion

- Improving vitality response 
(blood pump)

(80,83,84,85,87)

Collagen
- BC

- Increasing root length
- Enhancing mineralization of root canal
- Increasing dental wall thickness
- Narrowing apical width 
- Healing the periapical lesion
- Increasing intracanal connective tissue formation

N/A (88-92)

Gelatin
- BC

- Increasing root lenght and thickness
- Increasing root length
- Increasing dental wall thickness
- Narrowing apical width  
- Increasing intracanal connective tissue formation

N/A (93,94)

Chitosan
- BC
- Sodium hyaluronate
- Pectin

- Increasing root length and thickness 
- Increasing dental wall thickness
- Enhancing mineralization of root canal
- Narrowing apical width 
- Healing the periapical lesion 
- Increasing intracanal connective tissue formation

- Increasing vascularization (95,96)

Fibrin - Increasing root length and thickness  
- Enhancing mineralization of root canal
- Narrowing apical width  
- Healing the periapical lesion

- Increasing vascularization (94,97)

HA - Increasing root length
- Enhancing mineralization of root canal
- Increasing dental wall thickness
- Narrowing apical width  
- Healing the periapical lesion
- Increasing intracanal connective tissue formation

- Increasing vascularization (73,98)

PLLA
- DPSC
- Minced-pulp MSC

- Enhance tissue mineralization
- Increase expression levels of DMP1, DSPP, COL1 , 
and OPN genes 

N/A (99-101)

PLGA
- DPSC
- Magnesium

- Increase bone height and volume
- Enhance bone mineralization
- Enhance surface closing

- Initiate neurovascular regeneration (102,103)

PCL
- PDLSC
- Fluorapatite

- Enhance bone formation in defect tissue
- Improve periodontium neogenesis
- Increase expression of DMP1, DSPP, RUNX2, OCN, 
SPP1,  COL1A1 , and GDF5 genes

N/A (104,105)

Synthetic biomaterial 

Types of Scaffolds
Regenerative Potential

References

Blood-derived

Natural-derived polymers

Table 3. Regenerative potential of blood-derived, natural-derived polymer, and sythetic polymer bioscaffolds.
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during the blood state alterations from liquid to solid.
(74) This technique usually includes canal preparation 
and disinfection, followed by induction of BC from the 
periapical region.(107) 
 The practicality and success of regenerative 
endodontic therapy using BC, including in treating 
permanent or immature teeth with apical periodontitis and 
necrotic pulps, have been reported. In terms of pulp and 
dentin regeneration, BC bioscaffold therapy showed that 
it was able to give substantial results in increasing root 
length and thickness, thickening dental wall, improving 
bone density, providing apical closure, as well as periapical 
healing.(78-80,82,84,108) Immature symptomatic apical 
periodontitis teeth treated with BC scaffold showed a similar 
root morphology compared to other teeth that underwent 
normal development.(74,109) 
 Although has been performed a lot previously, yet the 
failure in inducing apical bleeding or in achieving adequate 
blood volume within the canal space remain as the common 
problems during the therapy with BC bioscaffold. The 
percentage of discoloration was also significantly greater in 
teeth with BC scaffold therapy compared with teeth with 
other platelets concentrates.(86) Hence, lately the use of 
autologous platelet concentrates, including platelet-rich 
plasma (PRP) and platelet-rich fibrin (PRF), have been 
explored as the possible scaffold source for regenerative 
endodontics therapy.(83,85)
 PRP, an autologous first-generation platelet 
concentrate, is a high concentrate of autologous platelet 
obtained by centrifugation of autologous blood that may be 
source for several types of growth factors such as TGF-β, 
insulin growth factor (IGF), platelet-derived growth factor 
(PDGF), VEGF, as well as fibroblasts growth factor (FGF).
(110,111) PRP preparation process consists of the removal 
of erythrocytes that would be expected to undergo necrosis 
shortly after clot formation. The PRP clot is composed of 
fibrin, fibronectin, and vitronectin, which are cell adhesion 
molecules required for cell migration.(78) PRP is an 
ideal scaffold regenerative endodontic treatment since it 
is comparably easy to prepare in a dental setting, rich in 
growth factors, and forms a 3D fibrin matrix that helps 
attract the growth factors.(77) 
 As a comparable autologous bioscaffold, PRP has 
been able to show results of further root development 
(including root lengthening and thickening), periapical 
lesion resolution, improvement of periapical bone density, 
and continued apical closure compared with BC in the 
regenerative treatment of teeth with necrotic pulps.
(77,78,81,86) Most blood-derived bioscaffolds showed the 

ability to improve pulp vitality response. However, PRP was 
found to be more effective than BC in revascularization. 
Even though not significant PRP treatment showed highest 
vitality test response compared with BC treatment, which 
suggests the higher occurrence of pulp’s blood supply.(83,85) 
PRP has also been proved to be successfully stimulating the 
collagen production, sustained release of growth factors, as 
well as enhanced recruitment, retention, and proliferation 
of undifferentiated mesenchymal and endothelial cells from 
periapical area.(77,82) At a certain concentration of range, 
PRP also may increase the proliferation of fibroblasts and 
osteoblasts.(111)
 PRF, a second-generation platelet concentrate, is a 
non-thrombonized autologous fibrin mesh that responsible 
as a reservoir for the slow, continuous release of growth 
factors PRF is an unadulterated centrifuged blood which 
consists of autologous platelets and leukocytes present in a 
complex fibrin matrix, that is able to achieves polymerization 
naturally. PRF is composed of fibrin membranes enriched 
with platelets, growth factors, and cytokines.(86,112) The 
PRF clot is an autologous biomaterial and not an improved 
fibrin glue. Unlike the PRP, the strong fibrin matrix of PRF 
does not dissolve quickly after application, instead, it is 
formed slowly in a similar way to a natural BC.(80)
 Although  composed  of almost  similar  fibrin 
membranes, PRF has lower risk than PRP during the 
application since there is no bovine thrombin and 
anticoagulants present. PRF also shows better potency in 
accelerating wound and tissue healing, as well as better 
efficiency for cell proliferation and migration than PRP.
(113,114) PRF clots acted as successful scaffolds for the 
regeneration of dentin and pulpal contents in immature 
teeth with necrotic pulps because of its ability to increase 
root length, increase dental wall thickness, and healing the 
periapical lesion better than BC and PRP.(80,85) Meanwhile, 
in terms of clinical sign and symptom resolution, PRF 
achieved comparable outcomes to BC in regenerative 
endodontic therapy.(84) In the therapy of necrotic immature 
permanent teeth, revascularization/revitalization utilizing 
PRF also showed to be highly successful.(87) 
 When being combined with stem cells, PRP and PRF 
also show better regeneration potential. Human DPSCs was 
co-cultured with 10% of PRP showed higher expression 
levels of fetal liver kinase (Flk)-1, VEGF, PDGF, and 
stromal cell-derived factor 1 (SDF-1) mRNA compared 
with the combination of hDPSCs and fetal bovine serum 
(FBS). This suggests that PRP can promote vasculogenesis 
better than FBS in hDPSCs culture.(115) Both combinations 
of hDPSCs + PRP and hDPSCs + liquid-PRP showed 
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significant increase of cell migration, proliferation, and 
differentiation compared with hDPSCs only. Though in 
hDPSCs + liquid-PRF, the cell migration was observed 
faster than hDPSCs + PRP.(116)

Natural-derived Biomaterial Scaffolds
Natural-derived polymers are usually used as biomimetic 
materials for scaffold in regenerative endodontic therapy. 
Most of the natural polymers are bioactive, containing 
cellular binding motifs, thus promoting cell adhesion, and/
or present soluble signaling factors that are capable in 
regulating cell behaviour. Hence they are also known to 
provide better biocompatibility compared with synthetic 
polymers.(96,117) Natural polymers are also known to be 
rapidly degradable compared with other types of scaffolds, 
thus allowing easier replacement with natural tissues 
after the degradation.(110,118) Natural polymers consist 
of natural polypeptides of the ECM, such as collagen, 
fibrin, gelatin and keratin, as well as polypeptides that are 
chemically similar to natural glycosaminoglycans, such as 
alginate, chitosan and hyaluronic acid (HA).(96) 
 For the regeneration of pulp and dentin-like tissue, 
polymers like collagen, gelatin, fibrin, chitosan, and HA 
have shown the ability to improve root development, 
including increase root length, root thickness, and enhance 
the mineralization of root canal.(73,89,91,93,94,96-
98) While being used as a single scaffold, those natural 
polymers also showed better ability in increasing intracanal 
connective tissue formations and narrowing apical width 
compared with BC, healing the periapical lesion, increasing 
dental wall thickness, as well as resuming the maturation 
process for the immature teeth.(73,88-90,93,98)
 Natural polymers are often combined and crosslinked 
with other bioscaffold or chemical agents to improve 
its potential in regenerative therapy.(119) Dental pulp 
regeneration through cell homing approaches can be 
improved by using the combination of HA hydrogel and 
BC, as well as combination of chitosan hydrogel and BC 
scaffolds.(73,120) Meanwhile, to fill root canal space with 
new vital tissue and to enhance the root canal mineralization, 
the combination of gelatin sponge and BC scaffold as well 
as collagen and BC scaffold can be used, and have shown 
better results compared with BC scaffold only.(92,93) To 
enhance scaffolds physical properties, the crosslinking 
between collagen hydrogel and cinnamaldehyde (CA) had 
shown to be successful. It resulted in the enhanced physical 
properties of collagen by CA, which upregulated the cellular 
adhesion compared with the collagen only. This means that 
this property was promoted in the presence of CA.(121) 

 In terms of its vascularization function, while being 
used as a single bioscaffold, both fibrin and HA have shown 
the potential of increasing vascularization better than the 
control.(73,97) On the other hand, chitosan, when being used 
alone, does not show vascularization potential, however 
when being combined with sodium hyaluronate or pectin, 
both combinations were able to increase vascularization of 
connective tissues.(95)
 Besides its advantages in dental-pulp regeneration 
and vascularization, natural-derived bioscaffolds that are 
classified into moldable porous scaffold, such as chitosan 
and collagen as single scaffold, or even combination of 
gelatin/collagen hydrogens bioscaffold, also have the ability 
to promote cell adhesion, migration and proliferation.
(96,110,119,122) And to induce hDPSCs cell migration, 
adhesion, and proliferation, which later followed by a 
culminated amount of mineralized matrix, scaffold from 
chitosan and collagen matrix can also be combined with 
calcium-aluminate.(123) In the combination with SCAP, 
cell viability promotion, mineralization, and odontoblastic-
like differentiation can also be achieved by using HA-based 
injectable gel scaffold.(124)

Synthetic Biomaterial Scaffolds
While natural-derived polymers scaffolds offer good 
biocompatibility and bioactivity, synthetic polymers 
scaffolds offer more flexible and controllable physical 
and mechanical properties to fit for specific applications.
(76,125) Polylactic acid (PLA) and polyglycolic acid 
(PGA), as well as their copolymers such as poly-L-lactic 
acid (PLLA), polylactic-polyglycolic acid (PLGA), and 
polycaprolactone (PCL) have been successfully reported as 
bioscaffold for regenerative endodontics therapy.(74) 
 Synthetic polymers scaffolds and its combination 
with other scaffold materials are able to induce pulp-dentin 
regeneration. The increase of mineralization, as well as 
tissue and bone formation, can be reached by using the 
combination of PLGA and magnesium scaffold, PLLA 
combined with DPSC or minced-pulp mesenchymal stem 
cell (MSC), as well as combination of PCL and PDLSC.
(100,103,104) Other than that, culture of hDPSCs on either 
side of PLGA scaffold was also able to enhance surface 
closing in the opened side of scaffold. Meanwhile, in terms 
of pulp vascularization and neurogenesis, the enhancement 
of neurovascular regeneration through angiogenic and 
neurogenic paracrine secretion has been reported after the 
therapy with PLGA scaffold on hDPSCs culture.(102)
 PLLA and PLGA scaffolds while being cultured 
in DPSC are able to improve DPSC differentiation and 
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proliferation, it also induces longer cell replicative 
lifespan.(99,100,102) PLLA scaffold was also used for 
human minced-pulp MSC, and the results found that the 
combination showed even better ability to increase cell 
differentiation and replication better than in DPSC.(100) 
Although not being used as scaffold as much as PLLA and 
PLGA, the use of PCL scaffolds in SCAP and hDPSCs 
seeding were also reported to be able to increase the cell 
proliferation and differentiation.(105,126) 
 A PLGA microsphere combined with hDPSCs, was 
able to increase hDPSCs proliferation and adhesion to the 
scaffold, as well as increase expression levels of DMP1, 
DSPP, COL1, and OPN genes.(101) Meanwhile, increased 
expression of DMP1, DSPP, runt-related transcription factor 
2 (RUNX2), osteocalcin (OCN), secreted phosphoprotein 
1 (SPP1), collagen type I alpha 1 (COL1A1), and growth 
differentiation factor 5 (GDF5) genes was obtained 
with the combination of PCL and fluorapatite.(105) In 
the construction of dental and periodontal pulp for the 
preservation of periodontal ligament fibroblasts (PDLF), the 
use of PLGA scaffold combined with PRF has shown the 
ability to sustain fibroblast viability.(74,127) 

Various signaling molecules, including growth factors and 
cytokines have been recognized to enhance the proliferation, 
migration and differentiation of dental stem cells. These 
molecules are naturally contained in the pulpal cells and 
dentin matrix, and involved in modulating dentin-pulp 
complex homeostasis.(128) In the pulp-dentin regeneration 
process, the remaining periapical and pulpal cells, adjacent 
dentin, or implanted platelet concentrates, blood clot 
scaffold, or stem cells are responsible for the release of 
signaling molecules. To accelerate the process, exogenous 
signaling molecules are often delivered together with dental 
stem cells in a scaffold. Addition of signaling molecules 
to transplanted dental stem cells is expected to mimic the 
signaling cascades that occur during the formation of pulp-
dentin complex.(129)

Signaling Molecules Related to Cell Migration
Bone morphogenetic protein (BMP)-2, TGF-β1, basic FGF 
(bFGF), PDGF, VEGF, NGF, and BDNF have been reported 
to stimulate cell migration (Table 4). Induction of cell 
migration by these molecules is important, since cells must 
reach the damaged sites to regenerate the tissues. Several 
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signaling pathways have been identified to be induced 
by these molecules in stimulating cell migration. For 
example, via PDGFR-β/Akt pathway, PDGF contributes 
in recruiting smooth muscle cells to blood vessels (168); 
BDNF accelerates DPSCs migration via extracellular 
signal-regulated kinase (Erk) phosphorylation (193); VEGF 
increases the migration of DPSCs through VEGF receptor 
(VEGFR) 2 activation and its downstream focal adhesion 
kinase (FAK) / phosphoinositide 3-kinase (PI3K) / Akt and 
p38 signaling.(181,182)

Signaling Molecules Related to Cell Proliferation
After reaching the damaged sites, cells must proliferate to 
increase the number of cells. BMP-2, TGF-β1, bFGF, PDGF 
and VEGF have been reported to increase proliferation (Table 
4). However, the proliferation process is inhibited when 
cells start to enter the differentiation stage. Thus, signaling 
molecules which have proliferation-related functions may 
both inhibit proliferation and induce differentiation in a 
specific time point, as discussed in the subsequent sections. 
Several signaling pathways have been identified to be 
induced by these molecules in stimulating cell proliferation. 
BMP-2-induced cell proliferation involves BMP-2 receptor 
(BMP2R) activation as well as Erk1/2 and small mothers 
against decapentaplegic (Smad) 1/5 phosphorylation (131), 
while bFGF modulates the expression of cyclin B1 (CCNB1) 
and cell division control 2 (CDC2), which are related to 
cell-cycle regulation via mitogen-activated protein kinase 
kinase (MEK)/Erk pathway.(154) VEGF activates the Akt 
signaling pathway and increases cyclin D1 expression 
levels, which in turn promotes proliferation of DPSCs.(182) 

Signaling Molecules Related to Dentinogenesis and Pulp 
Regeneration 
BMP-2, TGF-β1, bFGF, PDGF, VEGF, and NGF have 
been reported to enhance dentinogenesis (Table 4). 
These molecules have been demonstrated to increase 
differentiation and mineralization of both dental pulp 
cells and dental stem cells as indicated by an increase in 
alkaline phosphatase (ALP) activity and mineralization, 
as well as upregulation of osteo-/odontogenic marker 
expression in vitro.(132,151,157,170,188) In vivo, these 
molecules are observed to stimulate dentin formation.
(132,145,159,171,187)
 TGF-β1 has been demonstrated to enhance ALP 
activity via activation of Smad2/3, TGF-β activated kinase 
1 (TAK1), as well as Erk1/2 and p38.(148) BMP-2 has been 
known to induce phosphorylation of Erk1/2 and Smad1/5.
(131) bFGF could induce mitogen-activated protein kinases 
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(MAPKs) (p38, JNK, and Erk), PI3K/Akt, protein kinase 
C (PKC), and NF-κB (194), BMP or Wnt signaling.(195) 
Meanwhile, VEGF has been known to activate Akt, MAPKs 
(p38, JNK, and Erk), and NF-κB.(157)
 Intriguingly, induction of differentiation and 
mineralization by TGF-β1 and BMP-2 is often associated 
with a decrease in cell proliferation (136,151). In addition, 
TGF-β1 increases the expression of early marker genes 
of odonto-/osteo-genic differentiation and decreases 
the expression of late-stage mineralization genes.(151) 
VEGF might not be able to trigger full osteo-odontogenic 
differentiation, and facilitate only the early stage of 
cell differentiation.(187) VEGF potential in inducing 
mineralization is lower compared with bFGF (157) and 
NGF.(188) The potential of PDGF in enhancing hard tissue 
formation has been shown to be lower than other materials, 
such as enamel matrix derivative (EMD) and mineral trioxide 
aggregate (MTA).(196) Furthermore, PDGF-BB has been 
reported to inhibit the formation of mineral nodules.(14) 
Therefore, PDGF should be used in combination with other 
materials to increase the mineralization potential.(171,172) 
However, studies regarding signaling pathways that are 
involved in PDGF and NGF-induced dentin formation are 
limited. 
 bFGF, TGF-β1, and NGF are known to contribute 
to pulp regeneration (Table 4). bFGF regulates growth of 
dental pulp cells, upregulates the expression of CDC2, 
CCNB1, and tissue inhibitor of metalloproteinase 1 
(TIMP1), as well as inhibits ALP activity and collagen I 
production through activation of FGF receptor (FGFR) 
and MEK/Erk signaling.(154) Meanwhile, TGF-β1 has 
been demonstrated to increase TIMP1 production, collagen 
content, and procollagen I, but slightly attenuate MMP3 
production, which are related to the activation of activin 
receptor-like kinase-5(ALK5)/Smad2/3, TAK1, MEK/
Erk, and p38 signaling.(143,148) NGF has been reported 
to upregulate the expression of healing and repair-related 
genes (188), as well as improve pulp cell organization and 
pulpal architecture.(189) Thus, bFGF, TGF-β1 and NGF are 
involved in pulp regeneration by altering matrix turnover 
and dental pulp cell proliferation, as well as modulating 
pulp repair-related gene expression.

Signaling Molecules Related to Angiogenesis
VEGF, PDGF, bFGF, and TGF-β1 have been reported to 
induce angiogenesis (Table 4) by promoting differentiation 
of dental stem cells toward endothelial (162,175) or smooth 
muscle cells (149,150), as shown by upregulation of 
several differentiation genes.(144,150,162) These signaling 

molecules also induce the formation of capillary-like 
structures, both in vitro (162,170,175) and in vivo.(170,176)
VEGF has been demonstrated to accelerate angiogenesis, 
since angiogenesis could occur even in the absence of 
this molecule.(176) This molecule induces angiogenesis 
by inducing VEGFR phosphorylation and activating 
downstream Akt, MAPKs (p38, JNK, and Erk), NF-κB.
(157) Besides formation of new blood vessels, VEGF has 
been reported to induce anastomosis of DPSCs-derived 
blood vessels by increasing vascular endothelial (VE)-
cadherin expression through the activation of MEK1/Erk, 
which in turn causes E-26 transformation-specific-related 
gene (ERG) transcription factor binds to VE-cadherin 
promoter.(184) VEGF-induced angiogenesis could be 
enhanced by inhibiting specific pathways or combining 
it with other molecules. Combination of VEGF with 
SB-431542, an inhibitor of TGF-β1 signaling, has been 
shown to markedly promote SHED differentiation toward 
endothelial cells, since Smad1/2 inhibition is correlated with 
VEGFR2 activation.(175) IGF-1 (182) and SDF-1α (179) 
were also reported to have a synergistic effect in enhancing 
angiogenesis when combined with VEGF. 
 PDGF-BB alone induces capillary sprouting, and 
this phenomenon could be enhanced by bFGF.(168) 
bFGF alone could induce angiogenesis, but its angiogenic 
potential is lower than VEGF.(157) PDGF-BB has been 
reported to promote blood vessels maturation by regulating 
the investment of smooth muscle cells to DPSCs-derived 
capillaries through PDGFRβ and Akt phosphorylation in 
both types of cells.(168) In addition, DPSCs-derived smooth 
muscle cells that are produced after TGF-β1 treatment have 
been reported to stabilize blood vessels through ANGPT1/
Tie2 and VEGF/VEGFR2 signaling.(149) Combination of 
PDGF-BB and TGF-β1 induces the expression of smooth 
muscle-specific early, mid, and late markers, as well as 
enhances contraction ability in DPSCs, although the cells 
do not undergo morphological alterations toward smooth 
muscle-specific cell shapes.(150) 
 
Signaling Molecules Related to Neurogenesis
NGF, BDNF and bFGF have been reported to induce 
neurogenesis (Table 4). In several neurogenesis induction 
studies, NGF and BDNF are combined with other 
neurotrophin and non-neurotrophin signaling molecules.
(156,188,193) Meanwhile, bFGF is usually combined with 
epidermal growth factor (EGF) for neural induction.(167) 
Addition of these molecules increases the expression levels 
of neural markers and promotes morphological alterations 
of the treated cells toward neuronal and glial cells.
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(156,192,197) These molecules have also been reported 
to induce axonal sprouting and promote axonal growth.
(167,191)
 NGF and BDNF induce neurogenesis via non-specific 
activation of p75 neurotrophin receptor (p75NTR). In 
addition, NGF specifically activates tropomyosin-related 
kinase A (TrkA), while BDNF specifically activates 
TrkB.(198) Meanwhile, bFGF induces neurogenesis via 
activation of FGFR (199). Activation of these receptors 
have been reported to induce the phospholipase C (PLC)-γ 
pathway, which  in  turn  promotes  neuronal  differentiation.
(198,199) Besides, combination of bFGF and NGF also 
stimulates neuronal differentiation via PI3K/Akt and Erk 
pathways.(156) 

Numerous studies have reported successful pulp-dentin 
complex regeneration using specific combinations of dental 
stem cells, scaffold, and signaling molecules. Despite most 
of the ongoing regenerative endodontics studies using these 
combinations are conducted in animal models (23,200), 
these combinations are also reported to induce pulp-
dentin regeneration in human subjects. Several examples 
of dental stem cells, scaffold, and signaling molecules 
combination that have been known to regenerate human 
pulp-dentin complex are combination of hpDPSCs, G-CSF, 
and atelocollagen scaffold (31,32), as well as combination 
of DPSCs and L-PRF (30), which acts as scaffold and 
contains PDGF and TGF-β.(201) Indeed, the regenerative 
endodontics field is constantly growing. There will be 
new findings and innovation regarding dental stem cell 
biology, the development of new types of scaffolds, and 
the best way to deliver stem cells and signaling molecules 
to the root canal, which open a new perspective on a new 
era of endodontic therapy. Thus, current trends and future 
directions on regenerative endodontics should be further 
explored.
 In most pulp-dentin regeneration studies using human 
subjects, a scaffold that already contains dental stem cells 
and immobilized signaling molecules is directly transplanted 
to the root canal in a single appointment.(30-32) Despite the 
success of this current protocol in regenerating functional 
pulp-dentin complex, the current procedure might not be 
similar to the natural process of pulp-dentin regeneration, 

Future Perspectives on the Use of 
Dental Stem Cells, Scaffold, and 

Signaling Molecules Combination in 
Regenerative Endodontics

which involves specific cellular processes. Additionally, 
regeneration of the pulp-dentin complex may be incomplete 
in some patients due to differences in pulp-dentin damage 
severity. To achieve complete pulp-dentin regeneration, 
additional dental stem cells and/or signaling molecules 
could be applied in the several next appointments. Since 
scaffolds have different physical characteristics and 
biocompatibility, different types of scaffolds could be used to 
facilitate pulp-dentin regeneration in different parts of teeth. 
Different types of dental stem cells, signaling molecules, 
and scaffolds could also be combined with other endodontic 
procedures, such as apexification and pulp revascularization 
(202) to enhance the regeneration process in different 
parts of teeth. Therefore, dental stem cell, scaffold, and/
or signaling molecules application could be performed in 
multiple appointments to mimic the cellular processes that 
are involved in the regeneration process. Hence gradual 
pulp-dentin regeneration could be achieved. 
 Although studies regarding tissue engineering-based 
pulp-dentin regeneration show promising results, there are 
several challenges for its future clinical translation that need 
to be addressed. Regenerated pulp-dentin complex should 
have a precise and highly ordered histological structure as 
compared to that in normal teeth.(4) Besides, different oral 
diseases, such as irreversible pulpitis and necrotic pulp, as well 
as the presence of residual bacteria and lipopolysaccharide 
may affect the root canal microenvironment, which in turn 
alter the fate of transplanted dental stem cells.(203,204) 
Other factors, including age and the presence of systemic 
diseases might also affect regeneration potential of stem 
cells.(4,205) Since each type of dental stem cell, scaffold, 
and signaling molecule has unique characteristics and 
functions, they can be utilized to address these challenges by 
combining these components together to achieve successful 
regeneration. Thus, the right combination of dental stem 
cells, scaffolds, and signaling molecules is needed to 
enhance the pulp-dentin regeneration process.

Conclusion

Combinations of dental stem cells, scaffold, and signaling 
molecules mimic the cellular microenvironment that is 
suitable for regeneration. Hence, they are important to 
achieve the functional pulp-dentin complex formation. 
Since regenerative endodontics is a constantly growing 
field, current trends and future directions in this field are 
still needed to be further explored. The right combination 
of dental stem cells, scaffolds, and signaling molecules 
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could be determined based on the patients’ characteristics. 
Incomplete pulp-dentin regeneration, which may occur in 
some cases, could be overcome by applying dental stem 
cells, scaffolds, and/or signaling molecules in multiple 
appointments to achieve gradual pulp-dentin regeneration.
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Combining Dental Stem Cells, Scaffold, and Signaling Molecules for Pulp-Dentin Complex 1 

Regeneration 2 

 3 

Abstract 4 

Background: Pulp damage can lead to dentinogenesis impairment, irreversible pulpitis, or pulp 5 

necrosis. Despite being the most used endodontic procedure to treat damaged pulp, root canal 6 

therapy only results in nonvital teeth which are prone to fractures and secondary infection. Pulp-7 

dentin regeneration has a potential to regenerate structure similar to normal pulp-dentin complex, 8 

and can be achieved by combining dental stem cells, scaffold, and signaling molecules. This 9 

article reviews the role of various types of dental stem cells, scaffolds, signaling molecules, and 10 

their combinations in regenerating pulp-dentin complex.  11 

Content: Dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth 12 

(SHED), and dental follicle stem cells (DFSCs) were reported to regenerate pulp-dentin complex 13 

in situ. SHED might be more promising than DPSCs and DFSCs for regenerating pulp-dentin 14 

complex, since SHED have a higher proliferation potential and higher expression levels of 15 

signaling molecules. Scaffolds have characteristics resembling extracellular matrix, hence 16 

providing a suitable microenvironment for transplanted dental stem cells. To accelerate the 17 

regeneration process, exogenous signaling molecules are often delivered together with dental 18 

stem cells. Scaffolds and signaling molecules have different regenerative potential, including 19 

induction of cell proliferation and migration, formation of pulp- and/or dentin-like tissue, as well 20 

as angiogenesis and neurogenesis promotion. 21 

Summary: Combinations of dental stem cells, scaffold, and signaling molecules are important to 22 

achieve the functional pulp-dentin complex formation. Current trends and future directions on 23 



MR2023042 - Stem Cells, Scaffold, Signaling Molecules, and Pulp-Dentin Regeneration 

2 

regenerative endodontics should be explored. The right combination of dental stem cells, 24 

scaffold, and signaling molecules could be determined based on the patients’ characteristics. 25 

Incomplete pulp-dentin regeneration could be overcome by applying dental stem cells, scaffold, 26 

and/or signaling molecules in multiple visits. 27 

 28 

Keywords: pulp-dentin regeneration, regenerative endodontics, dental stem cells, scaffold, 29 

signaling molecules 30 

 31 

Introduction 32 

Dental pulp, the only soft tissue in the tooth, plays a critical role in sustaining tooth 33 

homeostasis. However, this tissue is vulnerable to various stimuli, including infections, 34 

iatrogenic causes, and trauma.(1) If not treated properly, pulp damage can lead to dentinogenesis 35 

impairment and irreversible pulpitis or even pulp necrosis, since this tissue has a limited self-36 

repair capacity.(2) 37 

Damaged pulp can be treated by several procedures. Root canal therapy, the most used 38 

endodontic procedure, is based on the use of inert materials to fill the pulp chamber after 39 

pulpectomy. However, this procedure results in nonvital teeth, which are prone to fractures and 40 

secondary infection.(3) Regenerative endodontic treatment or pulp-dentin regeneration is an 41 

alternative procedure based on the tissue engineering principle. Pulp-dentin regeneration is more 42 

promising than other endodontic procedures since this procedure has a potential to regenerate 43 

structure similar to normal pulp-dentin complex. The main goals of pulp regeneration are pulp-44 

dentin complex formation as well as angiogenesis and neurogenesis in the newly regenerated 45 

pulp.(4) 46 

Comment [I1]: sentences need to be 
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Tissue engineering combines dental stem cells, scaffold, and signaling molecules to 47 

mimic a suitable microenvironment for regenerating pulp-dentin complex. Numerous studies 48 

have been established to examine the effects of dental stem cells, scaffold, signaling molecules, 49 

and their combinations in pulp regeneration, providing a new insight in the field of regenerative 50 

dentistry and opening a great opportunity for further clinical applications. This article reviews 51 

the role of various types of dental stem cells, scaffolds, signaling molecules, and their 52 

combinations in regenerating pulp-dentin complex. The right combination of these components 53 

could increase pulp-dentin regeneration therapy efficiency.  54 

 55 

Role of Dental Stem Cells in Regenerative Endodontics 56 

Based on the locations, dental stem cells are classified as dental pulp stem cells (DPSCs), 57 

stem cells from human exfoliated deciduous teeth (SHED), stem cells from the apical papilla 58 

(SCAP), dental follicle stem cells (DFSCs), periodontal ligament stem cells (PDLSCs). DPSCs, 59 

SHED, and DFSCs were reported to have potential in regenerating pulp-dentin complex in situ, 60 

both in animal models (Table 1) and human subjects (Table 2). 61 

 62 

Cell Number, Proliferation Rate, and Immunomodulatory Properties of DPSCs, SHED and 63 

DFSCs 64 

DPSCs, SHED and DFSCs are different in several aspects, including the number of cells 65 

isolated from the tissues, proliferation rate, and immunomodulatory mechanisms. DPSCs and 66 

SHED have relatively high cell numbers in original cultures compared to DFSCs, because dental 67 

pulp, both in permanent and deciduous teeth, have relatively high amounts of stem cells 68 

compared to dental follicles of developing tooth germ. Since dental follicles only contain small 69 
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amounts of cells and located in sites that are relatively not easy to be accessed, DFSCs are 70 

difficult to be obtained and distinguished from other types of dental stem cells.(4)  71 

DPSCs have been reported to have a higher proliferation rate compared with bone 72 

marrow mesenchymal stem cells (BMMSCs), while SHED have a higher proliferation rate than 73 

DPSCs.(31) It has been demonstrated that the proliferation rate of DFSCs is notably higher than 74 

DPSCs.(32) Moreover, in a recent study, DFSCs were shown to have a higher proliferation rate 75 

than SHED.(33) Thus, DFSCs might have the highest proliferation rate, followed by SHED and 76 

DPSCs. High proliferation of DFSCs implies that they are more immature, since this type of 77 

stem cells are isolated from developing tissues (34), and consequently they might be more plastic 78 

compared with other dental stem cells. In summary, DPSCs, SHED, and DFSCs vary in their 79 

proliferation rates, which could be determined by the developmental stages of the stem cell 80 

sources. 81 

DPSCs, SHED and DFSCs have also been reported to modulate the immune system 82 

through several mechanisms. DPSCs have been demonstrated to modulate the adaptive and 83 

innate immune responses through interaction with B cells, T cells, macrophages, dendritic cells 84 

(DCs), and natural killer (NK) cells. For instance, the production of B cell immunoglobulin and 85 

proliferation of T cell proliferation are inhibited in co-culture of peripheral blood mononuclear 86 

cells (PBMCs) and DPSCs. Transforming growth factor (TGF)-β secreted by DPSCs plays a 87 

crucial role in this inhibition and the addition of interferon (IFN)-γ to DPSCs culture enhances 88 

the inhibitory effects.(35) DPSCs markedly decrease CD4
+
 and CD8

+
 T cell proliferation, 89 

irrespective of hypoxia-inducible factor (HIF)-1α expression level in DPSCs. However, 90 

overexpression of HIF-1α increases the DPSCs inhibitory effect on DCs proliferation. 91 

Expression of HIF-1α by DPSCs also enhances the recruitment and differentiation of 92 
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macrophages with M2 characteristics. Furthermore, NK cell-mediated cytotoxicity is suppressed 93 

in HIF-1α-overexpressed DPSCs.(36)  94 

SHED have been shown to modulate T cells, macrophages and DCs. This type of stem 95 

cell restrains the differentiation of T helper (Th) 17 cells, and has greater immunomodulatory 96 

potential compared with BMMSCs.(37) SHED have been reported to promote phenotypic 97 

polarization of macrophage toward M2-like phenotype in transwell co-culture systems and 98 

increase the number of macrophages with M2-like phenotype in rat model of periodontitis.(38) A 99 

study demonstrates that SHED affect differentiation, maturation, and T cell activation ability of 100 

DCs. The same study also shows that SHED augment T regulatory (Treg) cell induction ability 101 

of DCs. SHED-treated DCs have a lower level of IFN-γ, tumor necrosis factor (TNF)-α and 102 

interleukin (IL)-2, as well as higher level of IL-10.(39)  103 

Meanwhile, DFSCs have immunomodulatory properties toward T cells and macrophages. 104 

A study demonstrates that DFSCs increase the number of Treg cells as well as suppress CD4
+
 T 105 

cell proliferation via TGF-β and indoleamine 2,3-dioxygenase (IDO) pathways.(40) In 106 

lipopolysaccharide (LPS)-induced macrophage, this type of stem cell is involved in phenotypic 107 

polarization to M2 by secreting thrombospondin-1 and TGF-β3.(41) Therefore, the 108 

immunomodulatory activities of DPSCs are exerted on B cells, T cells, macrophages, DCs, and 109 

NK cells. SHED regulates T cells, macrophages and DCs, while DFSCs show 110 

immunomodulatory activities toward T cells and macrophages. 111 

 112 

DPSCs, SHED and DFSCs Play a Crucial Role in Regenerating Pulp-dentin Complex 113 

Dental stem cells are involved in pulp-dentin complex formation in situ. When 114 

transplanted into an emptied root canal or a tooth construct, DPSCs, SHED, and DFSCs generate 115 
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tissue that has characteristics resembling dental pulp. Several biomarkers have been used to 116 

detect the presence of the regenerated pulp, such as thyrotropin-releasing hormone-degrading 117 

enzyme (TRH-DE), syndecan 3, and tenascin. Furthermore, magnetic resonance imaging (MRI) 118 

can also be utilized to assess pulp regeneration by dental stem cells in the root canal (Table 1, 119 

Table 2). After pulpectomy, the signal intensity of MRI is relatively low compared with those in 120 

the normal teeth. The signal intensity in the pulpectomized tooth then increases several days after 121 

transplantation and keeps decreasing until it is similar to normal pulp, indicating complete pulp 122 

regeneration.(19) 123 

Formation of dentin-like structure by DPSCs, SHED, and DFSCs has also been 124 

documented by the generation of dentin matrix deposition that causes dentin thickening and the 125 

presence of odontoblast-like cells on the canal dentinal walls which express both specific and 126 

non-specific odontoblast markers. Specific odontoblasts markers include enamelysin/matrix 127 

metalloproteinase (MMP) 20, dentin sialoprotein (DSP), dentin sialo phosphoprotein (DSPP) and 128 

dentin matrix acidic phosphoprotein (DMP) 1 (9,16), while non-specific odontoblasts markers 129 

include bone sialoprotein (BSP), alkaline phosphatase (ALP), osteopontin (OPN), osteocalcin 130 

(OCN), osterix (OSX), and Runt-related transcription factor 2 (RUNX2).(12,27) There are 131 

several viewpoints regarding the use of non-specific odontoblasts markers for detecting newly 132 

regenerated dentin. Some investigators consider that enhanced expression of these markers 133 

suggest greater dentin regeneration potential (6,8,12,13,26) since they involve in dentin 134 

formation.(42) Other investigators consider these markers as osteogenic markers instead of 135 

odontogenic markers.(27,43) The increase in the expression of these markers implies that the 136 

regenerated structure has similar characteristics with bone instead of dentin.(43). Therefore, 137 

these markers should not be more strongly expressed in dentin than the expression of 138 
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odontoblast-specific markers.(9,12,27) Besides detection of odontoblast markers, cone beam 139 

computed tomography (CBCT) can be used to assess dentin formation (Table 2), which is 140 

demonstrated by a reduction in low-density areas, indicating a decrease in pulp volume and an 141 

increase in dentin thickness.(30) Studies that use ectopic and semi orthotopic pulp-dentin 142 

regeneration models are not included in Table 1, since these models do not provide similar 143 

conditions as the human oral cavity.(4)  144 

Additionally, the research that assesses the ability of DFSCs to form pulp-dentin complex 145 

is more limited than those conducted using DPSCs and SHED. DFSCs are usually used to 146 

simultaneously regenerate pulp-dentin and cementum-periodontal complexes.(27) This may be 147 

caused by the tendency of DFSCs to regenerate periodontal tissue and tooth root rather than 148 

pulp-dentin complex. Transplantation of treated dentin matrix that contains DFSCs regenerates 149 

periodontal-like tissue in subcutaneous space and cementum-like tissue in the outer surface of 150 

dentin.(44) Moreover, combination of DFSCs and treated dentin matrix which is transplanted to 151 

the alveolar fossa of rats have a potential to induce root formation.(45) Thus, DFSCs are better to 152 

use in periodontal tissue and root regeneration, although they might also have a potential to 153 

regenerate pulp-dentin complex. Despite the large number of studies that explore the 154 

regenerative potential of DPSCs, SHED might be more promising than DPSCs, since SHED 155 

have a higher proliferation potential (31) and higher expression levels of signaling molecules 156 

which may contribute to the pulp-dentin regeneration.(46)  157 

 158 

DPSCs, SHED and DFSCs are Involved in Angiogenesis 159 

Angiogenesis has been reported to occur in pulp-like tissue regenerated by DPSCs and 160 

SHED in situ. There are limited studies that demonstrate the involvement of DFSCs in the 161 
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angiogenesis process in regenerated pulp tissue (Table 1). The angiogenic potential of DFSCs 162 

has been reported to be lower compared to DPSCs and SCAP.(47) The new vessels provide 163 

oxygen and nutrition to the newly regenerated pulp, hence support the survival of the 164 

transplanted stem cells, and facilitate further regeneration process. Blood vessels in the 165 

regenerated pulp can be detected using immunostaining of Griffonia (Bandeiraea) simplicifolia 166 

lectin 1 (BS-1 lectin) and CD31 (Table 1). 167 

In addition, laser Doppler flowmetry can be used to assess angiogenesis and analyze the 168 

blood flow in the regenerated pulp tissue, as demonstrated by several studies. Blood flow in the 169 

pulp tissue regenerated by DPSCs is not remarkably different compared to that in normal pulp 170 

tissue, implying complete functional angiogenesis.(16) Human tooth with symptomatic 171 

irreversible pulpitis which is treated with DPSCs and normal tooth have low mean perfusion 172 

units. Blood perfusion in both teeth is indicated by pulse characteristics.(28) In addition, SHED-173 

transplanted teeth experience an increase in the average of vascular formation.(25) 174 

DPSCs, SHED, and DFSCs are involved in angiogenesis through differentiation toward 175 

endothelial cells (26) or angiogenic factors secretion. Several angiogenic factors that are 176 

produced by these stem cells includes vascular endothelial growth factor (VEGF) (14,26,27), 177 

HIF-1α (26,30), granulocyte-monocyte colony-stimulating factor (GM-CSF), MMP3 (14), E-178 

selectin (16), angiopoietin (ANGPT), and von Willebrand factor (vWF).(13) These factors 179 

stimulate vessel formation by modulating local endothelial cells in a paracrine manner.(14) 180 

Several subsets of DPSCs have been reported to secrete angiogenic factors but they do not 181 

incorporate to the newly formed blood vessels, such as dental pulp CD31
-
 side population cells 182 

(14) and granulocyte colony-stimulating factor (G-CSF) mobilized DPSCs.(16,48) 183 
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Angiogenesis in pulp-like tissue can be induced further by culturing dental stem cells 184 

under hypoxic conditions. Hypoxia mimics conditions in the dental pulp cavity (49), which 185 

increases the expression of HIF-1α. Upregulation of this transcriptional factor activates the 186 

expression of angiogenesis-related genes.(11,23) Hypoxia culture on nanofibrous spongy 187 

microspheres increases angiogenesis potential of human DPSCs (hDPSCs) as indicated by more 188 

CD31-stained blood vessels in the regenerated pulp-like tissues.(11) Another research 189 

demonstrates that the mRNA expression levels of HIF-1α in hypoxia preconditioned DPSCs 190 

(hpDPSCs) are two times higher compared to those in mobilized DPSCs, while VEGF 191 

expression levels in both DPSCs are similar. hpDPSCs have been demonstrated to have a similar 192 

neovascularization potential compared to mobilized DPSCs.(23) DPSCs from permanent and 193 

deciduous teeth that are cultured under hypoxic conditions have similar expression levels of 194 

VEGF and GM-CSF, as well as in situ neovascularization potential.(24) Furthermore, co-culture 195 

of dental stem cells with endothelial cells has also been demonstrated to enhance angiogenesis. 196 

Crosstalk between transplanted stem cells with endothelial cells has been shown to increase the 197 

expression of angiogenic factors in both cells by activating specific pathways, such as nuclear 198 

factor κB (NF-κB).(50)  199 

 200 

DPSCs, SHED and DFSCs are Involved in Neurogenesis 201 

DPSCs, SHED, and DFSCs have a potential to induce neurogenesis, as shown by the 202 

studies that reported the presence of nerve fibers in pulp-like tissue after stem cell 203 

transplantation. Newly formed nerve fibers in orthotopic pulp regeneration models are detected 204 

using immunostaining of protein gene product 9.5 (PGP9.5), neuronal nuclear (NeuN), 205 

neurofilament (NF), calcitonin gene-related peptide (CGRP), and transient receptor potential 206 



MR2023042 - Stem Cells, Scaffold, Signaling Molecules, and Pulp-Dentin Regeneration 

10 

cation channel subfamily V member 1 (TRPV1) (Table 1). The expression of other neurological 207 

markers, such as sodium voltage-gated channel alpha subunit 1 (SCN1A) and neuromodulin 208 

genes (14,16), as well as tubulin-βIII (27), nestin, and transient receptor potential cation channel 209 

subfamily M member 8 (TRPM8) protein (25), has also been detected in cultured or 210 

subcutaneously implanted stem cells. Electric pulp test is another common technique utilized for 211 

detecting nerve fibers in regenerated pulp tissue (Table 1, Table 2). 212 

Mechanisms of neurogenesis induction are similar to the angiogenesis induction by 213 

DPSCs, SHED, and DFSCs. These types of stem cells have been reported to differentiate toward 214 

neural cells.(51,52). In addition, various neurogenic factors are produced by DPSCs and SHED, 215 

including nerve growth factor (NGF), glial cell-derived neurotrophic factor (GDNF), brain-216 

derived neurotrophic factor (BDNF), neuropeptide Y, and neurotrophin 3 (NT3).(14) 217 

Investigations on neurogenic factors secreted by DFSCs are still limited. Hypoxic conditions 218 

could enhance the expression of neurogenic factors in dental pulp stem cells. NGF and BDNF 219 

expression levels are notably higher in hpDPSCs compared to those in mobilized DPSCs, but 220 

GDNF expression level is lower. It has been reported that hpDPSCs have a similar reinnervation 221 

potential compared to mobilized DPSCs.(23) A recent study revealed that DPSCs from 222 

deciduous teeth had a markedly higher expression of BDNF compared to those obtained from 223 

permanent teeth, but not NGF or GDNF. However, both of these stem cells had a similar 224 

reinnervation potential.(24) 225 

 226 

Factors Affecting the Regenerative Potential of DPSCs, SHED and DFSCs in Pulp-Dentin 227 

Complex Regeneration 228 
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Several factors may affect the regenerative potential of DPSCs, SHED, and DFSCs. 229 

Aging has been reported to cause the reduction of DPSCs regenerative potential. An animal 230 

study demonstrated that about 60% of root canal area is covered by pulp-dentin complex after 231 

120 days in teeth of aged dogs transplanted with autologous mobilized DPSCs.(17) This 232 

percentage is much lower than that in young dogs, which shows regeneration volume of more 233 

than 90% after 60 days.(16) SHED, which are obtained from dental pulp of younger individuals, 234 

have a higher expression of neuronal markers when compared to adult DPSCs, suggesting lower 235 

neurogenic potential in DPSCs.(53) In dental follicle cells, cell senescence is correlated with a 236 

decrease in osteogenic potential and lower WNT5A expression, although the role of WNT5A 237 

may be less significant in regulating the expression of osteogenic markers.(54) 238 

Dental diseases, such as caries, are reported to have no effect or even increase 239 

regenerative potential of dental stem cells. SHED obtained from carious deciduous teeth has a 240 

similar osteogenic potential compared to those that were obtained from sound deciduous 241 

teeth.(55) Meanwhile, DPSCs isolated from teeth with deep caries have greater proliferation and 242 

angiogenesis abilities, as well as higher expression of odontoblast differentiation markers.(56,57) 243 

Dental stem cells can differentiate not only to odontoblasts and dental pulp cells, but also 244 

to other types of cells, since it has been reported that transplantation of DPSCs regenerates 245 

periodontal ligament-, bone-, and cementum-like tissues instead of pulp-like tissue. Signals sent 246 

from tissues surrounding the root canal, such as alveolar bone and periodontal ligament, might 247 

affect the fate of transplanted dental stem cells.(43) Taken together, the success of stem cells-248 

mediated pulp-dentin complex regeneration may be affected by aging, dental diseases, and 249 

signals sent from the surrounding tissues.  250 

 251 

Comment [I7]: what is the range of age 
young and aged dog?? 
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Recent Advances on the Use of Dental Stem Cells in Regenerative Endodontics 252 

 Dental stem cells have been demonstrated to regenerate functional pulp-dentin complex 253 

in human subjects in several studies, most of them using autologous dental stem cells (Table 2). 254 

Combination of autologous mobilized DPSCs and good manufacturing practice (GMP)-grade G-255 

CSF are transplanted into the teeth of five adult irreversible pulpitis patients.(29) Mobilized 256 

DPSCs are subsets of DPSCs isolated through G-CSF-induced cell mobilization.(48) Four weeks 257 

after transplantation, four patients show a positive electric pulp test result. Lateral dentin 258 

formation is observed in three patients as shown by CBCT imaging. Interestingly, all patients do 259 

not experience any adverse effects or toxicity caused by mobilized DPSCs transplantation.(29) 260 

 Successful pulp regeneration using autologous DPSCs obtained from inflamed pulp has 261 

also been reported. DPSCs are obtained from the permanent tooth with symptomatic irreversible 262 

pulpitis. These stem cells are implanted with leukocyte platelet-rich fibrin (L-PRF) obtained 263 

from the patient’s blood into the root canal of the same tooth. After 36 months, no tenderness to 264 

palpation or percussion, and no adverse effects are observed. Laser Doppler flowmetry results 265 

demonstrate that both untreated and DPSCs-implanted teeth have pulse characteristics, implying 266 

blood perfusion in the teeth, although the mean perfusion units in those teeth are low.(28) 267 

Transplantation of autologous hpDPSCs seeded on atelocollagen scaffold containing G-268 

CSF in multirooted molars of two patients affected by symptomatic or asymptomatic irreversible 269 

pulpitis has been successfully demonstrated. No periapical radiolucency is observed by CBCT 270 

and radiographic examination after 48 weeks. Moreover, no adverse events or systemic toxicity 271 

are experienced by these patients as shown by the results of clinical and laboratory 272 

evaluation.(30) 273 

Comment [I8]: event?? 
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SHED transplantation into injured human teeth markedly increases dentin thickness and 274 

root length, as well as reduces apical foramen width compared to the apexification procedure. An 275 

increase in vascular formation is observed in SHED transplantation group. In contrast, a decrease 276 

in vascular formation is observed in the apexification group. Teeth transplanted with SHED 277 

show a significantly higher mean decrease in sensation than those treated with apexification 278 

procedure. No adverse events were observed at 24 months after transplantation.(25) 279 

Besides dental stem cells, induced pluripotent stem cells (iPSCs), which are obtained by 280 

introducing reprogramming factors including octamer-binding transcription factor 4 (Oct4), 281 

Kruppel-like factor 4 (Klf4), sex determining region Y-box 2 (Sox2), l-myc, c-myc, and Lin28 to 282 

somatic cells, can also be used in pulp-dentin regeneration.(58-60) Stem cells, such as DPSCs 283 

(59), and differentiated cells, such as fibroblasts (60) could be used to generate iPSCs. 284 

Generation of odontoblasts-like cells could be performed by directly inducing iPSCs.(59) In 285 

addition, iPSCs could be induced toward iPSCs-derived neural crest-like cells (iNCLCs), which 286 

in turn can be differentiated further into odontoblasts-like cells.(59,60) Differentiation to 287 

odontoblasts and generation of pulp-like tissue from iPSCs can be induced by transfection of 288 

specific genes (58), as well as addition of exogenous growth factors (59,60) and scaffold.(60) 289 

Whole tooth regeneration is another promising advance in endodontic therapy. This 290 

method relies on the interaction between the dental mesenchyme and the dental epithelium to 291 

generate a bioengineered tooth bud.(61) Cells of the dental mesenchyme and the dental 292 

epithelium can be isolated from embryonic (62-64) or postnatal (62) dental tissues. Autologous 293 

(62), allogeneic (64), and xenogeneic (63) cells have been used in tooth bud production. Both 294 

types of cells are combined in collagen gel drop and cultured in vitro (62-64) or seeded in a 295 

Comment [I9]: mesenchymal? 
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scaffold.(65) The bioengineered tooth bud is then transplanted to the jaw bone to regenerate the 296 

new tooth. 297 

 298 

Role of Biomaterial Scaffolds in Regenerative Endodontic Therapy 299 

Along with dental stem cells, the use of biomaterial scaffold (bioscaffold) also becomes a 300 

notable consideration in regenerative endodontics, especially for the formation of dental tissues. 301 

These biomaterials are expanded in vitro to environmentally mimic the in vivo condition.(66) 302 

Ideal scaffolds for regenerative endodontic therapy should resemble the extracellular matrix 303 

(ECM) of pulp-dentin complex in terms of dimensional stability, sufficient porosity with 304 

adequate particle size, similar biodegradability rate, as well as physical and mechanical strength 305 

(66-68), since biocompatibility is highly important to prevent adverse tissue reactions.(69) 306 

 Bioscaffold for regenerative endodontic therapy includes broad ranges of applications 307 

and sources. Based on the scaffold geometry, the existing biological constructs are porous 308 

scaffolds, fibrous scaffolds, microsphere/microparticle scaffolds, and solid free-form 309 

scaffolds.(70) Meanwhile, based on the material sources, bioscaffold can be classified into 310 

blood-derived scaffolds, natural-derived biomaterial scaffolds, and synthetic biomaterial 311 

scaffolds. Each scaffold has different regenerative properties and potential, including pulp and 312 

dentin regeneration, vascularization, as well as stem cell proliferation and differentiation (Table 313 

3). 314 

 315 

Blood-derived Scaffolds 316 

Induction of bleeding and formation of intracanal blood-clot (BC) in the root canal is a 317 

well-known used method in regenerative endodontic therapy that applies the strategy of 318 
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bioscaffold for pulp-dentin regeneration and dental tissue ingrowth.(72,100) BC is a gel-like 319 

lump obtained during the blood state alterations from liquid to solid.(68) This technique usually 320 

includes canal preparation and disinfection, followed by induction of BC from the periapical 321 

region.(101)  322 

 The practicality and success of regenerative endodontic therapy using BC, including in 323 

treating permanent or immature teeth with apical periodontitis and necrotic pulps, have been 324 

reported. In terms of pulp and dentin regeneration, BC bioscaffold therapy showed that it was 325 

able to give substantial results in increasing root length and thickness, thickening dental wall, 326 

improving bone density, providing apical closure, as well as periapical healing.(72-74,76,78,102) 327 

Immature symptomatic apical periodontitis teeth treated with BC scaffold showed a similar root 328 

morphology compared to other teeth that underwent normal development.(68,103)  329 

Although has been performed a lot previously, yet the failure in inducing apical bleeding 330 

or in achieving adequate blood volume within the canal space remain as the common problems 331 

during the therapy with BC bioscaffold. The percentage of discoloration was also significantly 332 

greater in teeth with BC scaffold therapy compared to teeth with other platelets concentrates.(80) 333 

Hence, lately the use of autologous platelet concentrates, including platelet-rich plasma (PRP) 334 

and platelet-rich fibrin (PRF), have been explored as the possible scaffold source for regenerative 335 

endodontics therapy.(77,79) 336 

PRP, an autologous first-generation platelet concentrate, is a high concentrate of 337 

autologous platelet obtained by centrifugation of autologous blood that may be source for several 338 

types of growth factors such as TGF-β, insulin growth factor (IGF), platelet-derived growth 339 

factor (PDGF), VEGF, as well as fibroblasts growth factor (FGF).(104,105) PRP preparation 340 

process consists of the removal of erythrocytes that would be expected to undergo necrosis 341 
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shortly after clot formation. The PRP clot is composed of fibrin, fibronectin, and vitronectin, 342 

which are cell adhesion molecules required for cell migration.(72) PRP is an ideal scaffold 343 

regenerative endodontic treatment since it is comparably easy to prepare in a dental setting, rich 344 

in growth factors, and forms a 3D fibrin matrix that helps attract the growth factors.(71)  345 

As a comparable autologous bioscaffold, PRP has been able to show results of further 346 

root development (including root lengthening and thickening), periapical lesion resolution, 347 

improvement of periapical bone density, and continued apical closure compared to BC in the 348 

regenerative treatment of teeth with necrotic pulps.(71,72,75,80) Most blood-derived 349 

bioscaffolds showed the ability to improve pulp vitality response. However, PRP was found to be 350 

more effective than BC in revascularization. Even though not significant PRP treatment showed 351 

highest vitality test response compared to BC treatment, which suggests the higher occurrence of 352 

pulp’s blood supply.(77,79) PRP has also been proved to be successfully stimulating the collagen 353 

production, sustained release of growth factors, as well as enhanced recruitment, retention, and 354 

proliferation of undifferentiated mesenchymal and endothelial cells from periapical area.(71,76) 355 

At a certain concentration of range, PRP also may increase the proliferation of fibroblasts and 356 

osteoblasts.(105) 357 

 PRF, a second-generation platelet concentrate, is a non-thrombonized autologous fibrin 358 

mesh that responsible as a reservoir for the slow, continuous release of growth factors PRF is an 359 

unadulterated centrifuged blood which consists of autologous platelets and leukocytes present in 360 

a complex fibrin matrix, that is able to achieves polymerization naturally. PRF is composed of 361 

fibrin membranes enriched with platelets, growth factors, and cytokines (80,106). The PRF clot 362 

is an autologous biomaterial and not an improved fibrin glue. Unlike the PRP, the strong fibrin 363 
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matrix of PRF does not dissolve quickly after application, instead, it is formed slowly in a similar 364 

way to a natural BC.(74) 365 

Although composed of almost similar fibrin membranes, PRF has lower risk than PRP 366 

during the application since there is no bovine thrombin and anticoagulants present. PRF also 367 

shows better potency in accelerating wound and tissue healing, as well as better efficiency for 368 

cell proliferation and migration than PRP (107,108). PRF clots acted as successful scaffolds for 369 

the regeneration of dentin and pulpal contents in immature teeth with necrotic pulps because of 370 

its ability to increase root length, increase dental wall thickness, and healing the periapical lesion 371 

better than BC and PRP.(74,79) Meanwhile, in terms of clinical sign and symptom resolution, 372 

PRF achieved comparable outcomes to BC in regenerative endodontic therapy.(78) In the 373 

therapy of necrotic immature permanent teeth, revascularization/revitalization utilizing PRF also 374 

showed to be highly successful.(81)  375 

When being combined with stem cells, PRP and PRF also show better regeneration 376 

potential. Human DPSCs was co-cultured with 10% of PRP showed higher expression levels of 377 

fetal liver kinase (Flk)-1, VEGF, PDGF, and stromal cell-derived factor 1 (SDF-1) mRNA 378 

compared to the combination of hDPSCs and fetal bovine serum (FBS). This suggests that PRP 379 

can promote vasculogenesis better than FBS in hDPSCs culture.(109) Both combinations of 380 

hDPSCs + PRP and hDPSCs + liquid-PRP showed significant increase of cell migration, 381 

proliferation, and differentiation compared to hDPSCs only. Though in hDPSCs + liquid-PRF, 382 

the cell migration was observed faster than hDPSCs + PRP.(110) 383 

 384 

Natural-derived Biomaterial Scaffolds 385 
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Natural-derived polymers are usually used as biomimetic materials for scaffold in 386 

regenerative endodontic therapy. Most of the natural polymers are bioactive, containing cellular 387 

binding motifs, thus promoting cell adhesion, and/or present soluble signaling factors that are 388 

capable in regulating cell behaviour, hence it is also known to provide better biocompatibility 389 

compared to synthetic polymers.(90,111) Natural polymers are also known to be rapidly 390 

degradable compared to other types of scaffolds, hence allowing easier replacement with natural 391 

tissues after the degradation.(104,112) Natural polymers consist of natural polypeptides of the 392 

ECM, such as collagen, fibrin, gelatine and keratin, as well as polypeptides that are chemically 393 

similar to natural glycosaminoglycans, such as alginate, chitosan and hyaluronic acid (HA).(90)  394 

 For the regeneration of pulp and dentin-like tissue, polymers like collagen, gelatine, 395 

fibrin, chitosan, and HA have shown the ability to improve root development, including increase 396 

root length, root thickness, and enhance the mineralization of root canal (67,83,85,88,87,90-92). 397 

While being used as a single scaffold, those natural polymers also showed better ability in 398 

increasing intracanal connective tissue formations and narrowing apical width compared with 399 

BC, healing the periapical lesion, increasing dental wall thickness, as well as resuming the 400 

maturation process for the immature teeth.(67,82-84,87,92) 401 

 Natural polymers are often combined and crosslinked with other bioscaffold or chemical 402 

agents to improve its potential in regenerative therapy.(113) Dental pulp regeneration through 403 

cell homing approaches can be improved by using the combination of HA hydrogel and BC, as 404 

well as combination of chitosan hydrogel and BC scaffolds.(67,114) Meanwhile, to fill root canal 405 

space with new vital tissue and to enhance the root canal mineralization, the combination of 406 

gelatine sponge and BC scaffold as well as collagen and BC scaffold can be used, and have 407 

shown better results compared to BC scaffold only.(86,87) To enhance scaffolds physical 408 
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properties, the crosslinking between collagen hydrogel and cinnamaldehyde (CA) had shown to 409 

be successful. It resulted in the enhanced physical properties of collagen by CA, which 410 

upregulated the cellular adhesion compared to the collagen only. This means that this property 411 

was promoted in the presence of CA.(115)  412 

 In terms of its vascularization function, while being used as a single bioscaffold, both 413 

fibrin and HA have shown the potential of increasing vascularization better than the 414 

control.(67,91) On the other hand, chitosan, when being used alone, does not show 415 

vascularization potential, however when being combined with sodium hyaluronate or pectin, 416 

both combinations were able to increase vascularization of connective tissues.(89) 417 

Besides its advantages in dental-pulp regeneration and vascularization, natural-derived 418 

bioscaffolds that are classified into moldable porous scaffold, such as chitosan and collagen as 419 

single scaffold, or even combination of gelatine/collagen hydrogens bioscaffold, also have the 420 

ability to promote cell adhesion, migration and proliferation (90,104,113,116). And to induce 421 

hDPSCs cell migration, adhesion, and proliferation, which later followed by a culminated 422 

amount of mineralized matrix, scaffold from chitosan and collagen matrix can also be combined 423 

with calcium-aluminate.(117) In the combination with SCAP, cell viability promotion, 424 

mineralization, and odontoblastic-like differentiation can also be achieved by using HA-based 425 

injectable gel scaffold.(118) 426 

 427 

Synthetic Biomaterial Scaffolds 428 

While natural-derived polymers scaffolds offer good biocompatibility and bioactivity, 429 

synthetic polymers scaffolds offer more flexible and controllable physical and mechanical 430 

properties to fit for specific applications.(70,119) Polylactic acid (PLA) and polyglycolic acid 431 
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(PGA), as well as their copolymers such as poly-L-lactic acid (PLLA), polylactic-polyglycolic 432 

acid (PLGA), and polycaprolactone (PCL) have been successfully reported to be used as 433 

bioscaffold for regenerative endodontics therapy.(68)  434 

 Synthetic polymers scaffolds and its combination with other scaffold materials are able to 435 

induce pulp-dentin regeneration. The increase of mineralization, as well as tissue and bone 436 

formation, can be reached by using the combination of PLGA and magnesium scaffold, PLLA 437 

combined with DPSC or minced-pulp mesenchymal stem cell (MSC), as well as combination of 438 

PCL and PDLSC.(94,97,98) Other than that, culture of hDPSCs on either side of PLGA scaffold 439 

was also able to enhance surface closing in the opened side of scaffold. Meanwhile, in terms of 440 

pulp vascularization and neurogenesis, the enhancement of neurovascular regeneration through 441 

angiogenic and neurogenic paracrine secretion has been reported after the therapy with PLGA 442 

scaffold on hDPSCs culture.(96) 443 

 PLLA and PLGA scaffolds while being cultured in DPSC are able to improve DPSC 444 

differentiation and proliferation, it also induces longer cell replicative lifespan (93,94,96). PLLA 445 

scaffold was also used for human minced-pulp MSC, and the results found that the combination 446 

showed even better ability to increase cell differentiation and replication better than in DPSC 447 

(Liang, et al., 2017). Although not being used as scaffold as much as PLLA and PLGA, the use 448 

of PCL scaffolds in SCAP and hDPSCs seeding were also reported to be able to increase the cell 449 

proliferation and differentiation.(99,120)  450 

A PLGA microsphere combined with hDPSCs, was able to increase hDPSCs 451 

proliferation and adhesion to the scaffold, as well as increase expression levels of DMP1, DSPP, 452 

COL1, and OPN genes.(95) While increased expression of DMP1, DSPP, RUNX2, OCN, SPP1, 453 

COL1a1, and GDF5 genes was obtained with the combination of PCL and fluorapatite.(99) In 454 
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the construction of dental and periodontal pulp for the preservation of periodontal ligament 455 

fibroblasts (PDLF), the use of PLGA scaffold combined with PRF has shown the ability to 456 

sustain fibroblast viability.(68,121)  457 

 458 

Role of Signaling Molecules in Regenerative Endodontics 459 

Various signaling molecules, including growth factors and cytokines have been 460 

recognized to enhance the proliferation, migration and differentiation of dental stem cells. These 461 

molecules are naturally contained in the pulpal cells and dentin matrix, and involved in 462 

modulating dentin-pulp complex homeostasis.(122) In the pulp-dentin regeneration process, the 463 

remaining periapical and pulpal cells, adjacent dentin, or implanted platelet concentrates, blood 464 

clot scaffold, or stem cells are responsible for the release of signaling molecules. To accelerate 465 

the process, exogenous signaling molecules are often delivered together with dental stem cells in 466 

a scaffold. Addition of signaling molecules to transplanted dental stem cells is expected to mimic 467 

the signaling cascades that occur during the formation of pulp-dentin complex.(123) 468 

 469 

Signaling Molecules Related to Cell Migration 470 

Bone morphogenetic protein (BMP)-2, TGF-β1, basic FGF (bFGF), PDGF, VEGF, NGF, 471 

and BDNF have been reported to stimulate cell migration (Table 4). Induction of cell migration 472 

by these molecules is important, since cells must reach the damaged sites to regenerate the 473 

tissues. Several signaling pathways have been identified to be induced by these molecules in 474 

stimulating cell migration. For example, via PDGFR-β/Akt pathway, PDGF contributes in 475 

recruiting smooth muscle cells to blood vessels (162); BDNF accelerates DPSCs migration via 476 

extracellular signal-regulated kinase (Erk) phosphorylation (187); VEGF increases the migration 477 
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of DPSCs through VEGF receptor (VEGFR) 2 activation and its downstream focal adhesion 478 

kinase (FAK) / phosphoinositide 3-kinase (PI3K) / Akt and p38 signaling.(175,176) 479 

 480 

Signaling Molecules Related to Cell Proliferation 481 

After reaching the damaged sites, cells must proliferate to increase the number of cells. 482 

BMP-2, TGF-β1, bFGF, PDGF and VEGF have been reported to increase proliferation (Table 4). 483 

However, the proliferation process is inhibited when cells start to enter the differentiation stage. 484 

Thus, signaling molecules which have proliferation-related functions may both inhibit 485 

proliferation and induce differentiation in a specific time point, as discussed in the subsequent 486 

sections. Several signaling pathways have been identified to be induced by these molecules in 487 

stimulating cell proliferation. BMP-2-induced cell proliferation involves BMP-2 receptor 488 

(BMP2R) activation as well as Erk1/2 and small mothers against decapentaplegic (Smad) 1/5 489 

phosphorylation (Huang 2018), while bFGF modulates the expression of Cyclin B1 and cell 490 

division control 2 (cdc2), which are related to cell-cycle regulation via mitogen-activated protein 491 

kinase kinase (MEK)/Erk pathway.(148) VEGF activates the Akt signaling pathway and 492 

increases cyclin D1 expression levels, which in turn promotes proliferation of DPSCs.(176)  493 

 494 

Signaling Molecules Related to Dentinogenesis and Pulp Regeneration  495 

BMP-2, TGF-β1, bFGF, PDGF, VEGF, and NGF have been reported to enhance 496 

dentinogenesis (Table 4). These molecules have been demonstrated to increase differentiation 497 

and mineralization of both dental pulp cells and dental stem cells as indicated by an increase in 498 

ALP activity and mineralization, as well as upregulation of osteo-/odontogenic marker 499 
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expression in vitro.(126,145,150,151,182) In vivo, these molecules are observed to stimulate 500 

dentin formation.(126,139,153,165,181) 501 

TGF-β1 has been demonstrated to enhance ALP activity via activation of Smad2/3, TGF-502 

β activated kinase 1 (TAK1), as well as Erk1/2 and p38. (142) BMP-2 has been known to induce 503 

phosphorylation of Erk1/2 and Smad1/5.(125) bFGF could induce mitogen-activated protein 504 

kinases (MAPKs) (p38, JNK, and Erk), PI3K/Akt, protein kinase C (PKC), and nuclear factor κB 505 

(NF-κB) (188), BMP or Wnt signaling.(189) Meanwhile, VEGF has been known to activate Akt, 506 

MAPKs (p38, JNK, and Erk), and NF-κB.(151) 507 

Intriguingly, induction of differentiation and mineralization by TGF-β1 and BMP-2 is 508 

often associated with a decrease in cell proliferation (130,145). In addition, TGF-β1 increases the 509 

expression of early marker genes of odonto-/osteo-genic differentiation and decreases the 510 

expression of late-stage mineralization genes.(145) VEGF might not be able to trigger full osteo-511 

odontogenic differentiation, and facilitate only the early stage of cell differentiation.(181) VEGF 512 

potential in inducing mineralization is lower compared with bFGF (151) and NGF.(182) The 513 

potential of PDGF in enhancing hard tissue formation has been shown to be lower than other 514 

materials, such as enamel matrix derivative (EMD) and mineral trioxide aggregate (MTA).(190) 515 

Furthermore, PDGF-BB has been reported to inhibit the formation of mineral nodules.(12) 516 

Therefore, PDGF should be used in combination with other materials to increase the 517 

mineralization potential.(165,166) However, studies regarding signaling pathways that are 518 

involved in PDGF and NGF-induced dentin formation are limited.  519 

bFGF, TGF-β1, and NGF are known to contribute to pulp regeneration (Table 4). bFGF 520 

regulates growth of dental pulp cells, upregulates the expression of cdc2, cyclin B1, and tissue 521 

inhibitor of metalloproteinase-1 (TIMP-1), as well as inhibits ALP activity and collagen I 522 Comment [I10]: any capital letter?? 
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production through activation of FGF receptors (FGFRs) and MEK/Erk signaling.(148) 523 

Meanwhile, TGF-β1 has been demonstrated to increase TIMP-1 production, collagen content, 524 

and procollagen I, but slightly attenuate MMP-3 production, which are related to the activation 525 

of activin receptor-like kinase-5(ALK5)/Smad2/3, TAK1, MEK/Erk, and p38 526 

signaling.(137,142) NGF has been reported to upregulate the expression of healing and repair-527 

related genes (182), as well as improve pulp cell organization and pulpal architecture.(183) Thus, 528 

bFGF, TGF-β1 and NGF are involved in pulp regeneration by altering matrix turnover and dental 529 

pulp cell proliferation, as well as modulating pulp repair-related gene expression. 530 

 531 

Signaling Molecules Related to Angiogenesis 532 

VEGF, PDGF, bFGF, and TGF-β1 have been reported to induce angiogenesis (Table 4) 533 

by promoting differentiation of dental stem cells toward endothelial (156,169) or smooth muscle 534 

cells (143,144), as shown by upregulation of several differentiation genes (138,144,156). These 535 

signaling molecules also induce the formation of capillary-like structures, both in vitro 536 

(156,164,169) and in vivo (164,170). 537 

VEGF has been demonstrated to accelerate angiogenesis, since angiogenesis could occur 538 

even in the absence of this molecule (170). This molecule induces angiogenesis by inducing 539 

VEGFR phosphorylation and activating downstream Akt, MAPKs (p38, JNK, and Erk), NF-κB 540 

(151). Besides formation of new blood vessels, VEGF has been reported to induce anastomosis 541 

of DPSCs-derived blood vessels by increasing vascular endothelial (VE)-cadherin expression 542 

through the activation of MEK1/Erk, which in turn causes E-26 transformation-specific-related 543 

gene (ERG) transcription factor binds to VE-cadherin promoter (178). VEGF-induced 544 

angiogenesis could be enhanced by inhibiting specific pathways or combining it with other 545 
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molecules. Combination of VEGF with SB-431542, an inhibitor of TGF-β1 signaling, has been 546 

shown to markedly promote SHED differentiation toward endothelial cells, since Smad1/2 547 

inhibition is correlated with VEGFR2 activation (169). IGF-1 (169) and SDF-1α (173) were also 548 

reported to have a synergistic effect in enhancing angiogenesis when combined with VEGF.  549 

PDGF-BB alone induces capillary sprouting, and this phenomenon could be enhanced by 550 

bFGF (162). bFGF alone could induce angiogenesis, but its angiogenic potential is lower than 551 

VEGF (151). PDGF-BB has been reported to promote blood vessels maturation by regulating the 552 

investment of smooth muscle cells to DPSCs-derived capillaries through PDGFRβ and Akt 553 

phosphorylation in both types of cells (162). In addition, DPSCs-derived smooth muscle cells 554 

that are produced after TGF-β1 treatment have been reported to stabilize blood vessels through 555 

ANGPT1/Tie2 and VEGF/VEGFR2 signaling (143). Combination of PDGF-BB and TGF-β1 556 

induces the expression of smooth muscle-specific early, mid, and late markers, as well as 557 

enhances contraction ability in DPSCs, although the cells do not undergo morphological 558 

alterations toward smooth muscle-specific cell shapes (144).  559 

  560 

Signaling Molecules Related to Neurogenesis 561 

NGF, BDNF and bFGF have been reported to induce neurogenesis (Table 4). In several 562 

neurogenesis induction studies, NGF and BDNF are combined with other neurotrophin and non-563 

neurotrophin signaling molecules (150,182,187). Meanwhile, bFGF is usually combined with 564 

epidermal growth factor (EGF) for neural induction (161). Addition of these molecules increases 565 

the expression levels of neural markers and promotes morphological alterations of the treated 566 

cells toward neuronal and glial cells (150,186). These molecules have also been reported to 567 

induce axonal sprouting and promote axonal growth (161,185). 568 
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NGF and BDNF induce neurogenesis via non-specific activation of p75 neurotrophin 569 

receptor (p75NTR). In addition, NGF specifically activates tropomyosin-related kinase A 570 

(TrkA), while BDNF specifically activates TrkB (191). Meanwhile, bFGF induces neurogenesis 571 

via activation of FGFR (192). Activation of these receptors have been reported to induce the 572 

phospholipase C (PLC)-γ pathway, which in turn promotes neuronal differentiation (191,192). 573 

Besides, combination of bFGF and NGF also stimulates neuronal differentiation via PI3K/Akt 574 

and Erk pathways (150).  575 

 576 

Future Perspectives on the Use of Dental Stem Cells, Scaffold, and Signaling Molecules 577 

Combination in Regenerative Endodontics 578 

 Numerous studies have reported successful pulp-dentin complex regeneration using 579 

specific combinations of dental stem cells, scaffold, and signaling molecules. Despite most of the 580 

ongoing regenerative endodontics studies using these combinations are conducted in animal 581 

models (21,193), these combinations were also reported to induce pulp-dentin regeneration in 582 

human subjects. Several examples of dental stem cells, scaffold, and signaling molecules 583 

combination that have been known to regenerate human pulp-dentin complex are combination of 584 

hpDPSCs, G-CSF, and atelocollagen scaffold (29,30), as well as combination of DPSCs and L-585 

PRF (28), which acts as scaffold and contains PDGF and TGF-β (194). Indeed, the regenerative 586 

endodontics field is constantly growing. There will be new findings and innovation regarding 587 

dental stem cell biology, the development of new types of scaffolds, and the best way to deliver 588 

stem cells and signaling molecules to the root canal, which open a new perspective on a new era 589 

of endodontic therapy. Thus, current trends and future directions on regenerative endodontics 590 

should be further explored. 591 
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In most pulp-dentin regeneration studies using human subjects, a scaffold that already 592 

contains dental stem cells and immobilized signaling molecules is directly transplanted to the 593 

root canal in a single appointment (28-30). Despite the success of this current protocol in 594 

regenerating functional pulp-dentin complex, the current procedure might not be similar to the 595 

natural process of pulp-dentin regeneration, which involves specific cellular processes. 596 

Additionally, regeneration of the pulp-dentin complex may be incomplete in some patients due to 597 

differences in pulp-dentin damage severity. To achieve complete pulp-dentin regeneration, 598 

additional dental stem cells and/or signaling molecules could be applied in the several next 599 

appointments. Since scaffolds have different physical characteristics and biocompatibility, 600 

different types of scaffolds could be used to facilitate pulp-dentin regeneration in different parts 601 

of teeth. Different types of dental stem cells, signaling molecules, and scaffolds could also be 602 

combined with other endodontic procedures, such as apexification and pulp revascularization 603 

(195) to enhance the regeneration process in different parts of teeth. Therefore, dental stem cell, 604 

scaffold, and/or signaling molecules application could be performed in multiple appointments to 605 

mimic the cellular processes that are involved in the regeneration process, hence gradual pulp-606 

dentin regeneration could be achieved.  607 

Although studies regarding tissue engineering-based pulp-dentin regeneration show 608 

promising results, there are several challenges for its future clinical translation that need to be 609 

addressed. Regenerated pulp-dentin complex should have a precise and highly ordered 610 

histological structure as compared to that in normal teeth (4). Besides, different oral diseases, 611 

such as irreversible pulpitis and necrotic pulp, as well as the presence of residual bacteria and 612 

lipopolysaccharide may affect the root canal microenvironment, which in turn alter the fate of 613 

transplanted dental stem cells (196,197). Other factors, including age and the presence of 614 
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systemic diseases might also affect the regeneration potential of dental stem cells (4). Since each 615 

type of dental stem cell, scaffold, and signaling molecule has unique characteristics and 616 

functions, they can be utilized to address these challenges by combining these components 617 

together to achieve successful regeneration. Thus, the right combination of dental stem cells, 618 

scaffold, and signaling molecules is needed to enhance the pulp-dentin regeneration process. 619 

 620 

Conclusion 621 

 Combinations of dental stem cells, scaffold, and signaling molecules mimic the cellular 622 

microenvironment that is suitable for regeneration, hence they are important to achieve the 623 

functional pulp-dentin complex formation. Since regenerative endodontics is a constantly 624 

growing field, current trends and future directions in this field are still needed to be further 625 

explored. The right combination of dental stem cells, scaffold, and signaling molecules could be 626 

determined based on the patients’ characteristics. Incomplete pulp-dentin regeneration, which 627 

may occur in some cases, could be overcome by applying dental stem cells, scaffold, and/or 628 

signaling molecules in multiple appointments to achieve gradual pulp-dentin regeneration. 629 
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Table 1. Regenerative potential of DPSCs, SHED, and DFSCs in animal model of pulp-dentin regeneration. 

Type of 

Dental 

Stem 

Cells 

Species 

Regenerative Potential 

Reference 
Pulp- and/or Dentin-like 

Tissue 
Angiogenesis Neurogenesis 

DPSCs Dog 

Histology: 

- Pulp tissue regeneration 

- Dentin formation 

 

Positive immunostaining: DSPP 

Histology: 

Blood vessels in 

regenerated pulp 

N/A (5-8) 

 
Mini-pig 

Histology: 

- Pulp tissue regeneration 

- Dentin formation 

 

Positive immunostaining: DSP, 

DMP-1, and BSP 

Histology: 

Blood vessels in 

regenerated pulp 

N/A (9) 

 
Ferret 

Histology: 

Formation of osteodentin mixed 

with loose connective tissue. 

N/A N/A (10) 

 

Rat 

Histology: 

- Pulp tissue regeneration 

- Dentin formation 

 

Positive immunostaining: 

DMP1, DSPP, DSP, and OPN 

Histology: 

Blood vessels in 

regenerated pulp 

 

Positive immunostaining: 

CD31 

N/A (11-13) 
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DPSCs 

CD31
-
 

Dog 

Histology: 

- Pulp tissue regeneration 

- Dentin formation 

 

Gene expression: MMP20, 

syndecan 3, TRH-DE 

Positive immunostaining: 

BS-1 lectin 

Positive 

immunostaining: 

PGP9.5 

(14) 

DPSCs 

CD105
+
 

Dog 
Histology: 

Pulp tissue regeneration 

Histology: 

Blood vessels in 

regenerated pulp 

N/A (15) 

Mobilized 

DPSCs 
Dog 

Histology: 

- Pulp tissue regeneration 

- Dentin formation 

 

Gene expression: tenascin C, 

syndecan 3, TRH-DE, MMP20, 

DSPP 

 

Positive immunostaining: TRH-

DE 

 

MRI: 

Signal intensity of transplanted 

teeth was similar compared with 

that in normal teeth. 

Positive immunostaining: 

BS-1 lectin 

 

Laser Doppler flowmetry: 

Blood flow in regenerated 

pulp tissue is similar 

compared to that in normal 

pulp tissue. 

Positive 

immunostaining: 

PGP9.5 

 

Electric pulp test: 

Positive pulp sensibility 

response 

(16-23) 

hpDPSCs Dog 

Histology: 

- Pulp tissue regeneration 

- Dentin formation 

Positive immunostaining: 

BS-1 lectin 

Positive 

immunostaining: 

PGP9.5 

(23,24) 
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hpDPSCs 

from 

deciduous 

teeth 

Dog 

Histology: 

- Pulp tissue regeneration 

- Dentin formation 

Positive immunostaining: 

BS-1 lectin 

Positive 

immunostaining: 

PGP9.5 

(24) 

SHED Mini-pig 

Histology: 

- Pulp tissue regeneration 

- Dentin formation 

Histology: 

Blood vessels in 

regenerated pulp 

 

Positive immunostaining: 

CD31 

Positive 

immunostaining: NeuN, 

NF, CGRP, and TRPV1 

(25-26) 

DFSC Mini-pig 

Histology: 

- Pulp tissue regeneration 

- Dentin formation 

 

Positive immunostaining: DMP-

1, DSPP, COL1, COL3 

N/A N/A (27) 
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Table 2. Regenerative potential of DPSCs, SHED, and DFSCs in case reports and clinical trials of pulp-dentin regeneration. 

Type of 

Dental 

Stem 

Cells 

Regenerative Potential 

Reference 
Pulp- and/or Dentin-like Tissue Angiogenesis Neurogenesis 

DPSCs 

CBCT: 

- Formation of dentin bridge 

- Apical canal calcification 

Laser Doppler flowmetry: 

Blood perfusion in the 

transplanted tooth with low 

mean perfusion unit. 

N/A (28) 

Mobilized 

DPSCs 

MRI: 

Complete pulp regeneration 

 

CBCT: 

- Formation of lateral dentin 

- Decrease in dental pulp volume 

N/A 

Electric pulp test: 

Positive pulp sensibility 

response 

(29) 

hpDPSCs 

MRI: 

Complete pulp regeneration 

 

CBCT: 

- Formation of lateral dentin 

- Decrease in dental pulp volume 

N/A 

Electric pulp test: 

Positive pulp sensibility 

response 

(30) 

SHED 

Histology: 

Regenerated pulp with 

odontoblast layer, connective 

tissue, and blood vessels. 

 

CBCT: 

Increase in dentin thickness 

Laser Doppler flowmetry: 

An increase in vascular 

formation as indicated by high 

perfusion units. 

Positive immunostaining: 

NeuN 

 

Electric pulp test: 

Positive pulp sensibility 

response 

(25) 
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Table 3. Regenerative potential of blood-derived, natural-derived polymer, and sythetic polymer bioscaffolds. 

Types of Scaffolds 
Regenerative Potential 

References 
Pulp-dentin Regeneration Vascularization 

Blood-derived 

  

BC 

- Increasing root length and 

thickness 

- Increasing dental wall thickness 

- Improving bone density 

- Narrowing apical width  

- Healing the periapical lesion 

- Improving vitality response 

(blood pump) 
(71-80) 

PRP 

- Increasing root length and 

thickness 

- Increasing dental wall thickness 

- Improving bone density  

- Narrowing apical width 

- Healing the periapical lesion 

- Improving vitality response 

(blood pump) 
(71,72,74-77,79-81) 

PRF 

- Increasing root length and 

thickness 

- Increasing dental wall thickness  

- Improving bone density 

- Narrowing apical width  

- Healing the periapical lesion 

- Improving vitality response 

(blood pump) 
(74,77,78,79,81) 

Natural-derived polymers 



MR2023042 - Stem Cells, Scaffold, Signaling Molecules, and Pulp-Dentin Regeneration 

60 

  

Collagen 

- BC 

- Increasing root length 

- Enhancing mineralization of 

root canal 

- Increasing dental wall thickness 

- Narrowing apical width  

- Healing the periapical lesion 

- Increasing intracanal 

connective tissue formation 

N/A (82-86) 

Gelatin 

- BC 

- Increasing root lenght and 

thickness 

- Increasing root length 

- Increasing dental wall thickness 

- Narrowing apical width   

- Increasing intracanal 

connective tissue formation 

N/A (87,88) 

Chitosan 

- BC 

- Sodium hyaluronate 

- Pectin 

- Increasing root length and 

thickness  

- Increasing dental wall thickness 

- Enhancing mineralization of 

root canal 

- Narrowing apical width  

- Healing the periapical lesion  

- Increasing intracanal 

connective tissue formation 

- Increasing vascularization (89,90) 

Fibrin 

- Increasing root length and 

thickness   

- Enhancing mineralization of 

root canal 

- Narrowing apical width   

- Healing the periapical lesion 

- Increasing vascularization (88,91) 
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HA 

- Increasing root length 

- Enhancing mineralization of 

root canal 

- Increasing dental wall thickness 

- Narrowing apical width   

- Healing the periapical lesion 

- Increasing intracanal 

connective tissue formation 

- Increasing vascularization (67,92) 

Synthetic biomaterial  

  

PLLA 

- DPSC 

- Minced-pulp MSC 

- Enhance tissue mineralization 

- Increase expression levels of 

DMP1, DSPP, COL1, and OPN 

genes  

N/A (93-95) 

PLGA 

- DPSC 

- Magnesium 

- Increase bone height and 

volume 

- Enhance bone mineralization 

- Enhance surface closing 

- Initiate neurovascular 

regeneration 
(96,97) 

PCL 

- PDLSC 

- Fluorapatite 

- Enhance bone formation in 

defect tissue 

- Improve periodontium 

neogenesis 

- Increase expression of DMP1, 

DSPP, RUNX2, OCN, SPP1, 

COL1a1, and GDF5 genes 

N/A (98,99) 
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Table 4. Regenerative potential of signaling molecules in pulp-dentin regeneration. 

Signaling 

Molecule 

Regenerative Potential 

Reference 
Cell Migration 

Cell 

Proliferation 

Pulp- and/or 

Dentin-like Tissue 
Angiogenesis Neurogenesis 

BMP-2 

Inducing 

migration of 

dental pulp cells 

Increasing 

proliferation of 

dental pulp cells 

 Increasing ALP 

activity and 

mineralization 

 Promoting 

formation of new 

dentin 

 Upregulating 

differentiation 

markers 

- Gene expression: 

ALP, RUNX2, COL1, 

DSPP, DMP1, DSP, 

MMP20, BSP, OCN, 

and OSX 

- Protein expression: 

RUNX2, DSPP, 

DMP1, BSP, and 

OCN 

N/A N/A (124-135) 
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TGF-β1 

Inducing 

migration of 

dental pulp cells 

Increasing 

proliferation of 

DPSCs and 

dental pulp cells 

 Increasing ALP 

activity, 

mineralization, and 

collagen content 

 Promoting 

formation of new 

dentin 

 Upregulating 

differentiation 

markers 

- Gene expression: 

DSPP, DSP, 

MMP20, RUNX2, 

DMP1, COL1A1, and 

BSP  

- Protein expression: 

N-cadherin, TIMP1, 

COL1A1, DMP1, 

and BSP  

 Downregulating 

protein expression: 

MMP-3 

 Inducing smooth 

muscle cell 

differentation 

 Maintaining 

blood vessels 

stability 

 Upregulating 

differentiation 

markers 

- Gene expression: 

αSMA, SM22α, 

CALP, SMTN, and 

MYH11  

- Protein 

expression: αSMA, 

SM22α, CALP, 

SMTN, ANGPT1, 

Tie2, and SM-

MHC 

N/A (131,136-145) 
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bFGF 

Inducing 

migration of 

SCAP, 

mobilized 

DPSCs, 

BMMSCs, 

periodontal 

ligament 

fibroblasts, and 

endothelial cells 

Increasing 

proliferation of 

SHED, DPSCs, 

mobilized 

DPSCs, 

BMMSCs, dental 

pulp cells, 

periodontal 

ligament 

fibroblasts, and 

endothelial cells 

 Increasing ALP 

activity and 

mineralization 

 Promoting 

formation of new 

dentin 

 Upregulating 

differentiation 

markers 

- Gene expression: 

DSPP, MMP20, 

TRH-DE, ALP, 

TIMP1, DMP1, 

COL1A2, OPN, and 

OCN 

- Protein expression: 

DSPP, DMP1, 

TIMP1, and COL1 

 Enhancing blood 

vessel formation 

 Upregulating 

differentiation 

markers 

- Gene expression: 

VEGFR2, Tie2, 

ANGPT1, VWF, 

VE‐cadherin, and 

CD31  

- Protein 

expression: 

VEGFR2, Tie2, 

ANGPT1, vWF, 

VE‐cadherin, and 

CD31 

 Inducing 

neuronal and glial 

differentation 

 Promoting 

axonal sprouting 

and growth 

 Upregulating 

differentiation 

markers 

- Gene expression: 

Nestin, TUBB3, 

SOX2, VIM, 

NEFM, MAP2, 

NEFH, GFAP, and 

S100B 

- Protein 

expression: 

Nestin, NEFM, 

TUBB3, NeuN, 

GFAP, S100B, 

and MAP2 

(146-162) 
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PDGF 

Inducing 

migration of 

DPSCs, SHED, 

dental pulp 

cells, and 

smooth muscle 

cells 

Increasing 

proliferation of 

DPSCs 

 Increasing ALP 

activity and 

mineralization 

 Promoting 

formation of new 

dentin 

 Upregulating 

differentiation 

markers 

- Gene expression: 

DMP1, DSPP, and 

OCN 

- Protein expression: 

DMP1 and DSPP 

 Inducing smooth 

muscle and 

endothelial cell 

differentation 

 Enhancing blood 

vessel formation 

 Promoting blood 

vessel stabilization 

 Upregulating 

differentiation 

markers 

- Gene expression: 

αSMA, SM22α, 

CALP, SMTN, and 

MYH11 

- Protein 

expression: α-

SMA, SM22-α, 

CALP, SMTN, 

VEGFR2, Tie-2, 

CD31, and VE-

cadherin 

N/A 
(136,143,144,163-

168) 
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VEGF 

Inducing 

migration of 

DPSCs and 

endothelial cells 

Increasing 

proliferation of 

DPSCs and 

dental pulp cells 

 Increasing ALP 

activity and 

mineralization 

 Upregulating 

odontoblast markers 

- Gene expression: 

ALP, OCN, OSX, 

DSPP, RUNX2, 

DMP1, COL1A2, 

BSP, TGFB1, and 

OPN 

- Protein expression: 

DMP1, DSPP, and 

OSX 

 Inducing 

endothelial cell 

differentation 

 Enhancing blood 

vessel formation 

 Promoting blood 

vessel anastomosis 

 Upregulating 

differentiation 

markers 

- Gene expression: 

VWF, VEGFR2, 

VE‐cadherin, 

CD31, VEGFR1, 

EphrinB2, Tie2, 

and ANGPT 

- Protein 

expression: vWF, 

VEGFR2, VE‐

cadherin, CD31, 

Tie-2, F8 

N/A 
(124,130,151,156,169-

182) 

NGF 

Inducing 

migration of 

glial cells 

N/A 

 Improving pulpal 

architecture and cell 

organization 

 Upregulating gene 

expressions of 

differentiation 

markers: DSPP, 

DMP1, and TGFB1 

N/A 

 Inducing 

neuronal and glial 

differentation 

 Promoting 

axonal sprouting 

and growth 

 Upregulating 

differentiation 

markers 

- Gene expression: 

Nestin 

- Protein 

(150,182-185) 
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expression: S100, 

NF, and p75NTR 

BDNF 

Increasing 

migration of 

DPSCs 

N/A N/A N/A 

 Inducing 

neuronal and glial 

differentation 

 Upregulating 

protein 

expressions of 

differentiation 

markers: DCX, 

NeuN, S100B and 

p75NTR. 

(186-187) 
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Crucial Triad in Pulp-Dentin Complex Regeneration: Dental Stem Cells, Scaffolds, and 

Signaling Molecules 

 

Abstract 

Background: Pulp damage can lead to dentinogenesis impairment, irreversible pulpitis, or pulp 

necrosis. Despite being the most used endodontic procedure to treat damaged pulp, root canal 

therapy only results in nonvital teeth which are prone to fractures and secondary infection. Pulp-

dentin regeneration has a potential to regenerate structure similar to normal pulp-dentin complex, 

and can be achieved by combining dental stem cells, scaffold, and signaling molecules. This 

article reviews the role of various types of dental stem cells, scaffolds, signaling molecules, and 

their combinations in regenerating pulp-dentin complex.  

Content: Dental pulp stem cell (DPSC), stem cell from human exfoliated deciduous teeth 

(SHED), and dental follicle stem cell (DFSC) were reported to regenerate pulp-dentin complex 

in situ. SHED might be more promising than DPSCs and DFSCs for regenerating pulp-dentin 

complex, since SHED have a higher proliferation potential and higher expression levels of 

signaling molecules. Scaffolds have characteristics resembling extracellular matrix, hence 

providing a suitable microenvironment for transplanted dental stem cells. To accelerate the 

regeneration process, exogenous signaling molecules are often delivered together with dental 

stem cells. Scaffolds and signaling molecules have different regenerative potential, including 

induction of cell proliferation and migration, formation of pulp- and/or dentin-like tissue, as well 

as angiogenesis and neurogenesis promotion. 

Summary: Combinations of dental stem cells, scaffold, and signaling molecules are important to 

achieve the functional pulp-dentin complex formation. Current trends and future directions on 
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regenerative endodontics should be explored. The right combination of dental stem cells, 

scaffold, and signaling molecules could be determined based on the patients’ characteristics. 

Incomplete pulp-dentin regeneration could be overcome by applying dental stem cells, scaffold, 

and/or signaling molecules in multiple visits. 

 

Keywords: pulp-dentin regeneration, regenerative endodontics, dental stem cells, scaffold, 

signaling molecules 

 

Introduction 

Dental pulp, the only soft tissue in the tooth, plays a critical role in sustaining tooth 

homeostasis. However, this tissue is vulnerable to various stimuli, including infections, 

iatrogenic causes, and trauma.(1) If not treated properly, pulp damage can lead to dentinogenesis 

impairment and irreversible pulpitis or even pulp necrosis, since this tissue has a limited self-

repair capacity.(2) 

Damaged pulp can be treated by several procedures. Root canal therapy, the most used 

endodontic procedure, replaces inflamed or injured pulp with bioinert material fillings. However, 

this procedure results in nonvital teeth, which are prone to fractures and secondary infection.(3) 

Regenerative endodontic treatment or pulp-dentin regeneration is an alternative procedure based 

on the tissue engineering principle. Pulp-dentin regeneration is more holistic than other 

endodontic procedures since this procedure has a potential to regenerate structure similar to 

normal pulp-dentin complex. The main goals of pulp regeneration are pulp-dentin complex 

formation as well as angiogenesis and neurogenesis in the newly regenerated pulp.(4) 
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Tissue engineering combines dental stem cells, scaffold, and signaling molecules to 

mimic a suitable microenvironment for regenerating pulp-dentin complex. Numerous studies 

have been established to examine the effects of dental stem cells, scaffold, signaling molecules, 

and their combinations in pulp regeneration, providing a new insight in the field of regenerative 

dentistry and opening a great opportunity for further clinical applications. This article reviews 

the role of various types of dental stem cells, scaffolds, signaling molecules, and their 

combinations in regenerating pulp-dentin complex. The right combination of these components 

could increase pulp-dentin regeneration therapy efficiency.  

 

Role of Dental Stem Cells in Regenerative Endodontics 

Based on the locations, dental stem cells are classified as dental pulp stem cell (DPSC), 

stem cells from human exfoliated deciduous teeth (SHED), stem cells from the apical papilla 

(SCAP), dental follicle stem cell (DFSC), periodontal ligament stem cell (PDLSC).(5,6) DPSCs, 

SHED, and DFSCs were reported to have potential in regenerating pulp-dentin complex in situ, 

both in animal models (Table 1) and human subjects (Table 2). 

 

Cell Number, Proliferation Rate, and Immunomodulatory Properties of DPSCs, SHED and 

DFSCs 

DPSCs, SHED and DFSCs are different in several aspects, including the number of cells 

isolated from the tissues, proliferation rate, and immunomodulatory mechanisms. DPSCs and 

SHED have relatively high cell numbers in original cultures compared with DFSCs, because 

dental pulp, both in permanent and deciduous teeth, have relatively high amounts of stem cells 

compared with dental follicles of developing tooth germ. Since dental follicle tissues are smaller 



MR2023042 - Crucial Triad in Pulp-Dentin Complex Regeneration 

58 

in size, contain small amounts of cells, and located in sites that are relatively not easy to be 

accessed, DFSCs are difficult to be obtained and distinguished from other types of dental stem 

cells.(4)  

DPSCs have been reported to have a higher proliferation rate compared with bone 

marrow mesenchymal stem cell (BMMSC), while SHED have a higher proliferation rate than 

DPSCs.(33) It has been demonstrated that the proliferation rate of DFSCs is notably higher than 

DPSCs.(34) Moreover, in a recent study, DFSCs were shown to have a higher proliferation rate 

than SHED.(35) Thus, DFSCs might have the highest proliferation rate, followed by SHED and 

DPSCs. High proliferation of DFSCs implies that they are more immature, since this type of 

stem cells are isolated from developing tissues (36), and consequently they might be more plastic 

compared with other dental stem cells. In summary, DPSCs, SHED, and DFSCs vary in their 

proliferation rates, which could be determined by the developmental stages of the stem cell 

sources. 

Mesenchymal stem cell (MSC), including DPSCs, SHED and DFSCs have been reported 

to modulate the immune system through several mechanisms (37). DPSCs have been 

demonstrated to modulate the adaptive and innate immune responses through interaction with B 

cells, T cells, macrophages, dendritic cells (DCs), and natural killer (NK) cells. For instance, the 

production of B cell immunoglobulin and proliferation of T cell proliferation are inhibited in co-

culture of peripheral blood mononuclear cells (PBMCs) and DPSCs. Transforming growth factor 

(TGF)-β secreted by DPSCs plays a crucial role in this inhibition and the addition of interferon 

(IFN)-γ to DPSCs culture enhances the inhibitory effects.(38) DPSCs markedly decrease CD4
+
 

and CD8
+
 T cell proliferation, irrespective of hypoxia-inducible factor (HIF)-1α expression level 

in DPSCs. However, overexpression of HIF-1α increases the DPSCs inhibitory effect on DCs 
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proliferation. Expression of HIF-1α by DPSCs also enhances the recruitment and differentiation 

of macrophages with M2 characteristics. Furthermore, NK cell-mediated cytotoxicity is 

suppressed in HIF-1α-overexpressed DPSCs.(39)  

SHED have been shown to modulate T cells, macrophages and DCs. This type of stem 

cell restrains the differentiation of T helper (Th) 17 cells, and has greater immunomodulatory 

potential compared with BMMSCs.(40) SHED have been reported to promote phenotypic 

polarization of macrophage toward M2-like phenotype in transwell co-culture systems and 

increase the number of macrophages with M2-like phenotype in rat model of periodontitis.(41) A 

study demonstrates that SHED affect differentiation, maturation, and T cell activation ability of 

DCs. The same study also shows that SHED augment T regulatory (Treg) cell induction ability 

of DCs. SHED-treated DCs have a lower level of IFN-γ, tumor necrosis factor (TNF)-α and 

interleukin (IL)-2, as well as higher level of IL-10.(42)  

Meanwhile, DFSCs have immunomodulatory properties toward T cells and macrophages. 

A study demonstrates that DFSCs increase the number of Treg cells as well as suppress CD4
+
 T 

cell proliferation via TGF-β and indoleamine 2,3-dioxygenase (IDO) pathways.(43) In 

lipopolysaccharide (LPS)-induced macrophage, this type of stem cell is involved in phenotypic 

polarization to M2 by secreting thrombospondin-1 and TGF-β3.(44) Therefore, the 

immunomodulatory activities of DPSCs are exerted on B cells, T cells, macrophages, DCs, and 

NK cells. SHED regulates T cells, macrophages and DCs, while DFSCs show 

immunomodulatory activities toward T cells and macrophages. 

 

DPSCs, SHED and DFSCs Play a Crucial Role in Regenerating Pulp-dentin Complex 



MR2023042 - Crucial Triad in Pulp-Dentin Complex Regeneration 

60 

Dental stem cells are involved in pulp-dentin complex formation in situ. When 

transplanted into an emptied root canal or a tooth construct, DPSCs, SHED, and DFSCs generate 

tissue that has characteristics resembling dental pulp. Several biomarkers have been used to 

detect the presence of the regenerated pulp, such as thyrotropin-releasing hormone-degrading 

enzyme (TRH-DE), syndecan 3, and tenascin. Furthermore, magnetic resonance imaging (MRI) 

can also be utilized to assess pulp regeneration by dental stem cells in the root canal (Table 1, 

Table 2). After pulpectomy, the signal intensity of MRI is relatively low compared with those in 

the normal teeth. The signal intensity in the pulpectomized tooth then increases several days after 

transplantation and keeps decreasing until it is similar to normal pulp, indicating complete pulp 

regeneration.(21) 

Formation of dentin-like structure by DPSCs, SHED, and DFSCs has also been 

documented by the generation of dentin matrix deposition that causes dentin thickening and the 

presence of odontoblast-like cells on the canal dentinal walls which express both specific and 

non-specific odontoblast markers. Specific odontoblasts markers include dentin sialoprotein 

(DSP), dentin sialophosphoprotein (DSPP) and dentin matrix acidic phosphoprotein (DMP) 1 

(13-15), while non-specific odontoblasts markers include bone sialoprotein (BSP) and 

osteopontin (OPN).(11,14) There are several viewpoints regarding the use of non-specific 

odontoblasts markers for detecting newly regenerated dentin. Some investigators consider that 

enhanced expression of these markers suggest greater dentin regeneration potential 

(8,10,14,15,28) since they involve in dentin formation.(45) Other investigators consider these 

markers as osteogenic markers instead of odontogenic markers.(29,46) The increase in the 

expression of these markers implies that the regenerated structure has similar characteristics with 

bone instead of dentin.(46). Therefore, these markers should not be more strongly expressed in 
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dentin than the expression of odontoblast-specific markers.(11,14,29) Besides detection of 

odontoblast markers, cone beam computed tomography (CBCT) can be used to assess dentin 

formation (Table 2), which is demonstrated by a reduction in low-density areas, indicating a 

decrease in pulp volume and an increase in dentin thickness.(32) Studies that use ectopic and 

semiorthotopic pulp-dentin regeneration models are not included in Table 1, since these models 

do not provide similar conditions as the human oral cavity.(4)  

Additionally, the research that assesses the ability of DFSCs to form pulp-dentin complex 

is more limited than those conducted using DPSCs and SHED. DFSCs are usually used to 

simultaneously regenerate pulp-dentin and cementum-periodontal complexes.(29) This may be 

caused by the tendency of DFSCs to regenerate periodontal tissue and tooth root rather than 

pulp-dentin complex. Transplantation of treated dentin matrix that contains DFSCs regenerates 

periodontal-like tissue in subcutaneous space and cementum-like tissue in the outer surface of 

dentin.(47) Moreover, combination of DFSCs and treated dentin matrix which is transplanted to 

the alveolar fossa of rats have a potential to induce root formation.(48) Thus, DFSCs are better to 

use in periodontal tissue and root regeneration, although they might also have a potential to 

regenerate pulp-dentin complex. Despite the large number of studies that explore the 

regenerative potential of DPSCs, SHED might be more promising than DPSCs, since SHED 

have a higher proliferation potential (33) and higher expression levels of signaling molecules 

which may contribute to the pulp-dentin regeneration.(49)  

 

DPSCs, SHED and DFSCs are Involved in Angiogenesis 

Angiogenesis has been reported to occur in pulp-like tissue regenerated by DPSCs and 

SHED in situ. There are limited studies that demonstrate the involvement of DFSCs in the 
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angiogenesis process in regenerated pulp tissue (Table 1). The angiogenic potential of DFSCs 

has been reported to be lower compared with DPSCs and SCAP.(50) The new vessels provide 

oxygen and nutrition to the newly regenerated pulp, hence support the survival of the 

transplanted stem cells, and facilitate further regeneration process. Blood vessels in the 

regenerated pulp can be detected using immunostaining of Griffonia (Bandeiraea) simplicifolia 

lectin 1 (BS-1 lectin) and CD31 (Table 1). 

In addition, laser Doppler flowmetry can be used to assess angiogenesis and analyze the 

blood flow in the regenerated pulp tissue, as demonstrated by several studies. Blood flow in the 

pulp tissue regenerated by DPSCs is not remarkably different compared with that in normal pulp 

tissue, implying complete functional angiogenesis.(18) Human tooth with symptomatic 

irreversible pulpitis which is treated with DPSCs and normal tooth have low mean perfusion 

units. Blood perfusion in both teeth is indicated by pulse characteristics.(30) In addition, SHED-

transplanted teeth experience an increase in the average of vascular formation.(27) 

DPSCs, SHED, and DFSCs are involved in angiogenesis through differentiation toward 

endothelial cells (28) or angiogenic factors secretion. Several angiogenic factors that are 

expressed by these stem cells includes vascular endothelial growth factor (VEGF) (16,28,29), 

HIF1A (28), granulocyte-monocyte colony-stimulating factor (GM-CSF), matrix 

metalloproteinase 3 (MMP3) (16), selectin E (SELE) (18), angiopoietin (ANGPT), and von 

Willebrand factor (VWF).(15) These factors stimulate vessel formation by modulating local 

endothelial cells in a paracrine manner.(16) Several subsets of DPSCs have been reported to 

secrete angiogenic factors but they do not incorporate to the newly formed blood vessels, such as 

dental pulp CD31
-
 side population cells (16) and granulocyte colony-stimulating factor (G-CSF) 

mobilized DPSCs.(18,51) 
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Angiogenesis in pulp-like tissue can be induced further by culturing dental stem cells 

under hypoxic conditions. Hypoxia mimics conditions in the dental pulp cavity (52), which 

increases the expression of HIF1A. Upregulation of this transcriptional factor activates the 

expression of angiogenesis-related genes.(25) Hypoxia culture on nanofibrous spongy 

microspheres increases angiogenesis potential of human DPSCs (hDPSCs) as indicated by more 

CD31-stained blood vessels in the regenerated pulp-like tissues.(13) Another research 

demonstrates that the expression levels of HIF1A in hypoxia preconditioned DPSCs (hpDPSCs) 

are two times higher compared with those in mobilized DPSCs, while VEGF expression levels in 

both DPSCs are similar. hpDPSCs have been demonstrated to have a similar neovascularization 

potential compared to mobilized DPSCs.(25) DPSCs from permanent and deciduous teeth that 

are cultured under hypoxic conditions have similar expression levels of VEGF and GM-CSF, as 

well as in situ neovascularization potential.(26) Furthermore, co-culture of dental stem cells with 

endothelial cells has also been demonstrated to enhance angiogenesis. Crosstalk between 

transplanted stem cells with endothelial cells has been shown to increase the expression of 

angiogenic factors in both cells by activating specific pathways, such as nuclear factor κB (NF-

κB).(53)  

 

DPSCs, SHED and DFSCs are Involved in Neurogenesis 

DPSCs, SHED, and DFSCs have a potential to induce neurogenesis, as shown by the 

studies that reported the presence of nerve fibers in pulp-like tissue after stem cell 

transplantation. Newly formed nerve fibers in orthotopic pulp regeneration models are detected 

using immunostaining of protein gene product 9.5 (PGP9.5), neuronal nuclei (NeuN), 

neurofilament, calcitonin gene-related peptide (CGRP), and transient receptor potential cation 
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channel subfamily V member 1 (TRPV1) (Table 1). The expression of other neurological 

markers, such as sodium voltage-gated channel alpha subunit 1 (SCN1A) and neuromodulin 

genes (16,18), as well as tubulin-βIII (TUBB3) (29), nestin, and transient receptor potential 

cation channel subfamily M member 8 (TRPM8) protein (27), has also been detected in cultured 

or subcutaneously implanted stem cells. Electric pulp test is another common technique utilized 

for detecting nerve fibers in regenerated pulp tissue (Table 1, Table 2). 

Mechanisms of neurogenesis induction are similar to the angiogenesis induction by 

DPSCs, SHED, and DFSCs. These types of stem cells have been reported to differentiate toward 

neural cells.(54,55). In addition, various neurogenic factors are expressed by DPSCs and SHED, 

including nerve growth factor (NGF), glial cell-derived neurotrophic factor (GDNF), brain-

derived neurotrophic factor (BDNF), neuropeptide Y (NPY), and neurotrophin 3 (NTF3).(16,56) 

Investigations on neurogenic factors secreted by DFSCs are still limited. Hypoxic conditions 

could enhance the expression of neurogenic factors in dental pulp stem cells. NGF and BDNF 

expression levels are notably higher in hpDPSCs compared with those in mobilized DPSCs, but 

GDNF expression level is lower. It has been reported that hpDPSCs have a similar reinnervation 

potential compared to mobilized DPSCs.(25) A recent study revealed that DPSCs from 

deciduous teeth had a markedly higher mRNA expression of BDNF compared with those 

obtained from permanent teeth, but not NGF or GDNF. However, both of these stem cells had a 

similar BDNF protein expression level and reinnervation potential.(26) 

 

Factors Affecting the Regenerative Potential of DPSCs, SHED and DFSCs in Pulp-Dentin 

Complex Regeneration 
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Several factors may affect the regenerative potential of DPSCs, SHED, and DFSCs. 

Aging has been reported to cause the reduction of DPSCs regenerative potential. An animal 

study demonstrated that about 60% of root canal area is covered by pulp-dentin complex after 

120 days in teeth of aged dogs (5–6 years of age) transplanted with autologous mobilized 

DPSCs.(19) This percentage is much lower than that in young dogs (8-10 months of age), which 

shows regeneration volume of more than 90% after 60 days.(18) SHED, which are obtained from 

dental pulp of younger individuals, have a higher expression of neuronal markers when 

compared with adult DPSCs, suggesting lower neurogenic potential in DPSCs.(57) In dental 

follicle cells, cell senescence is correlated with a decrease in osteogenic potential and lower 

WNT5A expression, although the role of WNT5A may be less significant in regulating the 

expression of osteogenic markers.(58) 

Dental diseases, such as caries, are reported to have no effect or even increase 

regenerative potential of dental stem cells. SHED obtained from carious deciduous teeth has a 

similar osteogenic potential compared to those that were obtained from sound deciduous 

teeth.(59) Meanwhile, DPSCs isolated from teeth with deep caries have greater proliferation and 

angiogenesis abilities, as well as higher expression of odontoblast differentiation markers.(60,61) 

Dental stem cells can differentiate not only to odontoblasts and dental pulp cells, but also 

to other types of cells, since it has been reported that transplantation of DPSCs regenerates 

periodontal ligament-, bone-, and cementum-like tissues instead of pulp-like tissue. Signals sent 

from tissues surrounding the root canal, such as alveolar bone and periodontal ligament, might 

affect the fate of transplanted dental stem cells.(46) Taken together, the success of stem cells-

mediated pulp-dentin complex regeneration may be affected by aging, dental diseases, and 

signals sent from the surrounding tissues.  
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Recent Advances on the Use of Dental Stem Cells in Regenerative Endodontics 

 Dental stem cells have been demonstrated to regenerate functional pulp-dentin complex 

in human subjects in several studies, most of them using autologous dental stem cells (Table 2). 

Combination of autologous mobilized DPSCs and good manufacturing practice (GMP)-grade G-

CSF are transplanted into the teeth of five adult irreversible pulpitis patients.(31) Mobilized 

DPSCs are subsets of DPSCs isolated through G-CSF-induced cell mobilization.(51) Four weeks 

after transplantation, four patients show a positive electric pulp test result. Lateral dentin 

formation is observed in three patients as shown by CBCT imaging. Interestingly, all patients do 

not experience any adverse events or toxicity caused by mobilized DPSCs transplantation.(31) 

 Successful pulp regeneration using autologous DPSCs obtained from inflamed pulp has 

also been reported. DPSCs are obtained from the permanent tooth with symptomatic irreversible 

pulpitis. These stem cells are implanted with leukocyte platelet-rich fibrin (L-PRF) obtained 

from the patient’s blood into the root canal of the same tooth. After 36 months, no tenderness to 

palpation or percussion, and no adverse events are observed. Laser Doppler flowmetry results 

demonstrate that both untreated and DPSCs-implanted teeth have pulse characteristics, implying 

blood perfusion in the teeth, although the mean perfusion units in those teeth are low.(30) 

Transplantation of autologous hpDPSCs seeded on atelocollagen scaffold containing G-

CSF in multirooted molars of two patients affected by symptomatic or asymptomatic irreversible 

pulpitis has been successfully demonstrated. No periapical radiolucency is observed by CBCT 

and radiographic examination after 48 weeks. Moreover, no adverse events or systemic toxicity 

are experienced by these patients as shown by the results of clinical and laboratory 

evaluation.(32) 
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SHED transplantation into injured human teeth markedly increases dentin thickness and 

root length, as well as reduces apical foramen width compared with the apexification procedure. 

An increase in vascular formation is observed in SHED transplantation group. In contrast, a 

decrease in vascular formation is observed in the apexification group. Teeth transplanted with 

SHED show a significantly higher mean decrease in sensation than those treated with 

apexification procedure. No adverse events were observed at 24 months after transplantation.(27) 

Besides dental stem cells, induced pluripotent stem cells (iPSCs), which are obtained by 

introducing reprogramming factors including octamer-binding transcription factor 4 (Oct4), 

Kruppel-like factor 4 (Klf4), sex determining region Y-box 2 (Sox2), l-myc, c-myc, and Lin28 to 

somatic cells, can also be used in pulp-dentin regeneration.(62-65) Stem cells, such as DPSCs 

(63), and differentiated cells, such as fibroblasts (64) could be used to generate iPSCs. 

Generation of odontoblasts-like cells could be performed by directly inducing iPSCs.(63) In 

addition, iPSCs could be induced toward iPSCs-derived neural crest-like cells (iNCLCs), which 

in turn can be differentiated further into odontoblasts-like cells.(63,64) Differentiation to 

odontoblasts and generation of pulp-like tissue from iPSCs can be induced by transfection of 

specific genes (62), as well as addition of exogenous growth factors (63,64) and scaffold.(64) 

Whole tooth regeneration is another promising advance in endodontic therapy. This 

method relies on the interaction between the dental mesenchyme and the dental epithelium to 

generate a bioengineered tooth bud.(66) Cells of the dental mesenchyme and the dental 

epithelium can be isolated from embryonic (67-69) or postnatal (67) dental tissues. Autologous 

(67), allogeneic (69), and xenogeneic (68) cells have been used in tooth bud production. Both 

types of cells are combined in collagen gel drop and cultured in vitro (67-69) or seeded in a 
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scaffold.(70) The bioengineered tooth bud is then transplanted to the jaw bone to regenerate the 

new tooth. 

 

Role of Biomaterial Scaffolds in Regenerative Endodontic Therapy 

Along with dental stem cells, the use of biomaterial scaffold (bioscaffold) also becomes a 

notable consideration in regenerative endodontics, especially for the formation of dental tissues. 

These biomaterials are expanded in vitro to environmentally mimic the in vivo condition.(71,72) 

Ideal scaffolds for regenerative endodontic therapy should resemble the extracellular matrix 

(ECM) of pulp-dentin complex in terms of dimensional stability, sufficient porosity with 

adequate particle size, similar biodegradability rate, as well as physical and mechanical strength 

(71,73,74), since biocompatibility is highly important to prevent adverse tissue reactions.(75) 

 Bioscaffold for regenerative endodontic therapy includes broad ranges of applications 

and sources. Based on the scaffold geometry, the existing biological constructs are porous 

scaffolds, fibrous scaffolds, microsphere/microparticle scaffolds, and solid free-form 

scaffolds.(76) Meanwhile, based on the material sources, bioscaffold can be classified into 

blood-derived scaffolds, natural-derived biomaterial scaffolds, and synthetic biomaterial 

scaffolds. Each scaffold has different regenerative properties and potential, including pulp and 

dentin regeneration, vascularization, as well as stem cell proliferation and differentiation (Table 

3). 

 

Blood-derived Scaffolds 

Induction of bleeding and formation of intracanal blood-clot (BC) in the root canal is a 

well-known used method in regenerative endodontic therapy that applies the strategy of 
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bioscaffold for pulp-dentin regeneration and dental tissue ingrowth.(78,106) BC is a gel-like 

lump obtained during the blood state alterations from liquid to solid.(74) This technique usually 

includes canal preparation and disinfection, followed by induction of BC from the periapical 

region.(107)  

 The practicality and success of regenerative endodontic therapy using BC, including in 

treating permanent or immature teeth with apical periodontitis and necrotic pulps, have been 

reported. In terms of pulp and dentin regeneration, BC bioscaffold therapy showed that it was 

able to give substantial results in increasing root length and thickness, thickening dental wall, 

improving bone density, providing apical closure, as well as periapical healing.(78-80,82,84,108) 

Immature symptomatic apical periodontitis teeth treated with BC scaffold showed a similar root 

morphology compared to other teeth that underwent normal development.(74,109)  

Although has been performed a lot previously, yet the failure in inducing apical bleeding 

or in achieving adequate blood volume within the canal space remain as the common problems 

during the therapy with BC bioscaffold. The percentage of discoloration was also significantly 

greater in teeth with BC scaffold therapy compared with teeth with other platelets 

concentrates.(86) Hence, lately the use of autologous platelet concentrates, including platelet-

rich plasma (PRP) and platelet-rich fibrin (PRF), have been explored as the possible scaffold 

source for regenerative endodontics therapy.(83,85) 

PRP, an autologous first-generation platelet concentrate, is a high concentrate of 

autologous platelet obtained by centrifugation of autologous blood that may be source for several 

types of growth factors such as TGF-β, insulin growth factor (IGF), platelet-derived growth 

factor (PDGF), VEGF, as well as fibroblasts growth factor (FGF).(110,111) PRP preparation 

process consists of the removal of erythrocytes that would be expected to undergo necrosis 
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shortly after clot formation. The PRP clot is composed of fibrin, fibronectin, and vitronectin, 

which are cell adhesion molecules required for cell migration.(78) PRP is an ideal scaffold 

regenerative endodontic treatment since it is comparably easy to prepare in a dental setting, rich 

in growth factors, and forms a 3D fibrin matrix that helps attract the growth factors.(77)  

As a comparable autologous bioscaffold, PRP has been able to show results of further 

root development (including root lengthening and thickening), periapical lesion resolution, 

improvement of periapical bone density, and continued apical closure compared with BC in the 

regenerative treatment of teeth with necrotic pulps.(77,78,81,86) Most blood-derived 

bioscaffolds showed the ability to improve pulp vitality response. However, PRP was found to be 

more effective than BC in revascularization. Even though not significant PRP treatment showed 

highest vitality test response compared with BC treatment, which suggests the higher occurrence 

of pulp’s blood supply.(83,85) PRP has also been proved to be successfully stimulating the 

collagen production, sustained release of growth factors, as well as enhanced recruitment, 

retention, and proliferation of undifferentiated mesenchymal and endothelial cells from 

periapical area.(77,82) At a certain concentration of range, PRP also may increase the 

proliferation of fibroblasts and osteoblasts.(111) 

 PRF, a second-generation platelet concentrate, is a non-thrombonized autologous fibrin 

mesh that responsible as a reservoir for the slow, continuous release of growth factors PRF is an 

unadulterated centrifuged blood which consists of autologous platelets and leukocytes present in 

a complex fibrin matrix, that is able to achieves polymerization naturally. PRF is composed of 

fibrin membranes enriched with platelets, growth factors, and cytokines (86,112). The PRF clot 

is an autologous biomaterial and not an improved fibrin glue. Unlike the PRP, the strong fibrin 
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matrix of PRF does not dissolve quickly after application, instead, it is formed slowly in a similar 

way to a natural BC.(80) 

Although composed of almost similar fibrin membranes, PRF has lower risk than PRP 

during the application since there is no bovine thrombin and anticoagulants present. PRF also 

shows better potency in accelerating wound and tissue healing, as well as better efficiency for 

cell proliferation and migration than PRP (113,114). PRF clots acted as successful scaffolds for 

the regeneration of dentin and pulpal contents in immature teeth with necrotic pulps because of 

its ability to increase root length, increase dental wall thickness, and healing the periapical lesion 

better than BC and PRP.(80,85) Meanwhile, in terms of clinical sign and symptom resolution, 

PRF achieved comparable outcomes to BC in regenerative endodontic therapy.(84) In the 

therapy of necrotic immature permanent teeth, revascularization/revitalization utilizing PRF also 

showed to be highly successful.(87)  

When being combined with stem cells, PRP and PRF also show better regeneration 

potential. Human DPSCs was co-cultured with 10% of PRP showed higher expression levels of 

fetal liver kinase (Flk)-1, VEGF, PDGF, and stromal cell-derived factor 1 (SDF-1) mRNA 

compared with the combination of hDPSCs and fetal bovine serum (FBS). This suggests that 

PRP can promote vasculogenesis better than FBS in hDPSCs culture.(115) Both combinations of 

hDPSCs + PRP and hDPSCs + liquid-PRP showed significant increase of cell migration, 

proliferation, and differentiation compared with hDPSCs only. Though in hDPSCs + liquid-PRF, 

the cell migration was observed faster than hDPSCs + PRP.(116) 

 

Natural-derived Biomaterial Scaffolds 
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Natural-derived polymers are usually used as biomimetic materials for scaffold in 

regenerative endodontic therapy. Most of the natural polymers are bioactive, containing cellular 

binding motifs, thus promoting cell adhesion, and/or present soluble signaling factors that are 

capable in regulating cell behaviour, hence it is also known to provide better biocompatibility 

compared with synthetic polymers.(96,117) Natural polymers are also known to be rapidly 

degradable compared with other types of scaffolds, hence allowing easier replacement with 

natural tissues after the degradation.(110,118) Natural polymers consist of natural polypeptides 

of the ECM, such as collagen, fibrin, gelatin and keratin, as well as polypeptides that are 

chemically similar to natural glycosaminoglycans, such as alginate, chitosan and hyaluronic acid 

(HA).(96)  

 For the regeneration of pulp and dentin-like tissue, polymers like collagen, gelatin, fibrin, 

chitosan, and HA have shown the ability to improve root development, including increase root 

length, root thickness, and enhance the mineralization of root canal (73,89,91,93,94,96-98). 

While being used as a single scaffold, those natural polymers also showed better ability in 

increasing intracanal connective tissue formations and narrowing apical width compared with 

BC, healing the periapical lesion, increasing dental wall thickness, as well as resuming the 

maturation process for the immature teeth.(73,88-90,93,98) 

 Natural polymers are often combined and crosslinked with other bioscaffold or chemical 

agents to improve its potential in regenerative therapy.(119) Dental pulp regeneration through 

cell homing approaches can be improved by using the combination of HA hydrogel and BC, as 

well as combination of chitosan hydrogel and BC scaffolds.(73,120) Meanwhile, to fill root canal 

space with new vital tissue and to enhance the root canal mineralization, the combination of 

gelatin sponge and BC scaffold as well as collagen and BC scaffold can be used, and have shown 
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better results compared with BC scaffold only.(92,93) To enhance scaffolds physical properties, 

the crosslinking between collagen hydrogel and cinnamaldehyde (CA) had shown to be 

successful. It resulted in the enhanced physical properties of collagen by CA, which upregulated 

the cellular adhesion compared with the collagen only. This means that this property was 

promoted in the presence of CA.(121)  

 In terms of its vascularization function, while being used as a single bioscaffold, both 

fibrin and HA have shown the potential of increasing vascularization better than the 

control.(73,97) On the other hand, chitosan, when being used alone, does not show 

vascularization potential, however when being combined with sodium hyaluronate or pectin, 

both combinations were able to increase vascularization of connective tissues.(95) 

Besides its advantages in dental-pulp regeneration and vascularization, natural-derived 

bioscaffolds that are classified into moldable porous scaffold, such as chitosan and collagen as 

single scaffold, or even combination of gelatin/collagen hydrogens bioscaffold, also have the 

ability to promote cell adhesion, migration and proliferation (96,110,119,122). And to induce 

hDPSCs cell migration, adhesion, and proliferation, which later followed by a culminated 

amount of mineralized matrix, scaffold from chitosan and collagen matrix can also be combined 

with calcium-aluminate.(123) In the combination with SCAP, cell viability promotion, 

mineralization, and odontoblastic-like differentiation can also be achieved by using HA-based 

injectable gel scaffold.(124) 

 

Synthetic Biomaterial Scaffolds 

While natural-derived polymers scaffolds offer good biocompatibility and bioactivity, 

synthetic polymers scaffolds offer more flexible and controllable physical and mechanical 
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properties to fit for specific applications.(76,125) Polylactic acid (PLA) and polyglycolic acid 

(PGA), as well as their copolymers such as poly-L-lactic acid (PLLA), polylactic-polyglycolic 

acid (PLGA), and polycaprolactone (PCL) have been successfully reported to be used as 

bioscaffold for regenerative endodontics therapy.(74)  

 Synthetic polymers scaffolds and its combination with other scaffold materials are able to 

induce pulp-dentin regeneration. The increase of mineralization, as well as tissue and bone 

formation, can be reached by using the combination of PLGA and magnesium scaffold, PLLA 

combined with DPSC or minced-pulp mesenchymal stem cell (MSC), as well as combination of 

PCL and PDLSC.(100,103,104) Other than that, culture of hDPSCs on either side of PLGA 

scaffold was also able to enhance surface closing in the opened side of scaffold. Meanwhile, in 

terms of pulp vascularization and neurogenesis, the enhancement of neurovascular regeneration 

through angiogenic and neurogenic paracrine secretion has been reported after the therapy with 

PLGA scaffold on hDPSCs culture.(102) 

 PLLA and PLGA scaffolds while being cultured in DPSC are able to improve DPSC 

differentiation and proliferation, it also induces longer cell replicative lifespan (99,100,102). 

PLLA scaffold was also used for human minced-pulp MSC, and the results found that the 

combination showed even better ability to increase cell differentiation and replication better than 

in DPSC.(100) Although not being used as scaffold as much as PLLA and PLGA, the use of 

PCL scaffolds in SCAP and hDPSCs seeding were also reported to be able to increase the cell 

proliferation and differentiation.(105,126)  

A PLGA microsphere combined with hDPSCs, was able to increase hDPSCs 

proliferation and adhesion to the scaffold, as well as increase expression levels of DMP1, DSPP, 

COL1, and OPN genes.(101) While increased expression of DMP1, DSPP, runt-related 
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transcription factor 2 (RUNX2), osteocalcin (OCN), secreted phosphoprotein 1 (SPP1), collagen 

type I alpha 1 (COL1A1), and growth differentiation factor 5 (GDF5) genes was obtained with 

the combination of PCL and fluorapatite.(105) In the construction of dental and periodontal pulp 

for the preservation of periodontal ligament fibroblasts (PDLF), the use of PLGA scaffold 

combined with PRF has shown the ability to sustain fibroblast viability.(74,127)  

 

Role of Signaling Molecules in Regenerative Endodontics 

Various signaling molecules, including growth factors and cytokines have been 

recognized to enhance the proliferation, migration and differentiation of dental stem cells. These 

molecules are naturally contained in the pulpal cells and dentin matrix, and involved in 

modulating dentin-pulp complex homeostasis.(128) In the pulp-dentin regeneration process, the 

remaining periapical and pulpal cells, adjacent dentin, or implanted platelet concentrates, blood 

clot scaffold, or stem cells are responsible for the release of signaling molecules. To accelerate 

the process, exogenous signaling molecules are often delivered together with dental stem cells in 

a scaffold. Addition of signaling molecules to transplanted dental stem cells is expected to mimic 

the signaling cascades that occur during the formation of pulp-dentin complex.(129) 

 

Signaling Molecules Related to Cell Migration 

Bone morphogenetic protein (BMP)-2, TGF-β1, basic FGF (bFGF), PDGF, VEGF, NGF, 

and BDNF have been reported to stimulate cell migration (Table 4). Induction of cell migration 

by these molecules is important, since cells must reach the damaged sites to regenerate the 

tissues. Several signaling pathways have been identified to be induced by these molecules in 

stimulating cell migration. For example, via PDGFR-β/Akt pathway, PDGF contributes in 
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recruiting smooth muscle cells to blood vessels (168); BDNF accelerates DPSCs migration via 

extracellular signal-regulated kinase (Erk) phosphorylation (193); VEGF increases the migration 

of DPSCs through VEGF receptor (VEGFR) 2 activation and its downstream focal adhesion 

kinase (FAK) / phosphoinositide 3-kinase (PI3K) / Akt and p38 signaling.(181,182) 

 

Signaling Molecules Related to Cell Proliferation 

After reaching the damaged sites, cells must proliferate to increase the number of cells. 

BMP-2, TGF-β1, bFGF, PDGF and VEGF have been reported to increase proliferation (Table 4). 

However, the proliferation process is inhibited when cells start to enter the differentiation stage. 

Thus, signaling molecules which have proliferation-related functions may both inhibit 

proliferation and induce differentiation in a specific time point, as discussed in the subsequent 

sections. Several signaling pathways have been identified to be induced by these molecules in 

stimulating cell proliferation. BMP-2-induced cell proliferation involves BMP-2 receptor 

(BMP2R) activation as well as Erk1/2 and small mothers against decapentaplegic (Smad) 1/5 

phosphorylation (131), while bFGF modulates the expression of cyclin B1 (CCNB1) and cell 

division control 2 (CDC2), which are related to cell-cycle regulation via mitogen-activated 

protein kinase kinase (MEK)/Erk pathway.(154) VEGF activates the Akt signaling pathway and 

increases cyclin D1 expression levels, which in turn promotes proliferation of DPSCs.(182)  

 

Signaling Molecules Related to Dentinogenesis and Pulp Regeneration  

BMP-2, TGF-β1, bFGF, PDGF, VEGF, and NGF have been reported to enhance 

dentinogenesis (Table 4). These molecules have been demonstrated to increase differentiation 

and mineralization of both dental pulp cells and dental stem cells as indicated by an increase in 
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alkaline phosphatase (ALP) activity and mineralization, as well as upregulation of osteo-

/odontogenic marker expression in vitro.(132,151,157,170,188) In vivo, these molecules are 

observed to stimulate dentin formation.(132,145,159,171,187) 

TGF-β1 has been demonstrated to enhance ALP activity via activation of Smad2/3, TGF-

β activated kinase 1 (TAK1), as well as Erk1/2 and p38.(148) BMP-2 has been known to induce 

phosphorylation of Erk1/2 and Smad1/5.(131) bFGF could induce mitogen-activated protein 

kinases (MAPKs) (p38, JNK, and Erk), PI3K/Akt, protein kinase C (PKC), and NF-κB (194), 

BMP or Wnt signaling.(195) Meanwhile, VEGF has been known to activate Akt, MAPKs (p38, 

JNK, and Erk), and NF-κB.(157) 

Intriguingly, induction of differentiation and mineralization by TGF-β1 and BMP-2 is 

often associated with a decrease in cell proliferation (136,151). In addition, TGF-β1 increases the 

expression of early marker genes of odonto-/osteo-genic differentiation and decreases the 

expression of late-stage mineralization genes.(151) VEGF might not be able to trigger full osteo-

odontogenic differentiation, and facilitate only the early stage of cell differentiation.(187) VEGF 

potential in inducing mineralization is lower compared with bFGF (157) and NGF.(188) The 

potential of PDGF in enhancing hard tissue formation has been shown to be lower than other 

materials, such as enamel matrix derivative (EMD) and mineral trioxide aggregate (MTA).(196) 

Furthermore, PDGF-BB has been reported to inhibit the formation of mineral nodules.(14) 

Therefore, PDGF should be used in combination with other materials to increase the 

mineralization potential.(171,172) However, studies regarding signaling pathways that are 

involved in PDGF and NGF-induced dentin formation are limited.  

bFGF, TGF-β1, and NGF are known to contribute to pulp regeneration (Table 4). bFGF 

regulates growth of dental pulp cells, upregulates the expression of CDC2, CCNB1, and tissue 
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inhibitor of metalloproteinase 1 (TIMP1), as well as inhibits ALP activity and collagen I 

production through activation of FGF receptors (FGFRs) and MEK/Erk signaling.(154) 

Meanwhile, TGF-β1 has been demonstrated to increase TIMP1 production, collagen content, and 

procollagen I, but slightly attenuate MMP3 production, which are related to the activation of 

activin receptor-like kinase-5(ALK5)/Smad2/3, TAK1, MEK/Erk, and p38 signaling.(143,148) 

NGF has been reported to upregulate the expression of healing and repair-related genes (188), as 

well as improve pulp cell organization and pulpal architecture.(189) Thus, bFGF, TGF-β1 and 

NGF are involved in pulp regeneration by altering matrix turnover and dental pulp cell 

proliferation, as well as modulating pulp repair-related gene expression. 

 

Signaling Molecules Related to Angiogenesis 

VEGF, PDGF, bFGF, and TGF-β1 have been reported to induce angiogenesis (Table 4) 

by promoting differentiation of dental stem cells toward endothelial (162,175) or smooth muscle 

cells (149,150), as shown by upregulation of several differentiation genes.(144,150,162) These 

signaling molecules also induce the formation of capillary-like structures, both in vitro 

(162,170,175) and in vivo.(170,176) 

VEGF has been demonstrated to accelerate angiogenesis, since angiogenesis could occur 

even in the absence of this molecule.(176) This molecule induces angiogenesis by inducing 

VEGFR phosphorylation and activating downstream Akt, MAPKs (p38, JNK, and Erk), NF-

κB.(157) Besides formation of new blood vessels, VEGF has been reported to induce 

anastomosis of DPSCs-derived blood vessels by increasing vascular endothelial (VE)-cadherin 

expression through the activation of MEK1/Erk, which in turn causes E-26 transformation-

specific-related gene (ERG) transcription factor binds to VE-cadherin promoter.(184) VEGF-
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induced angiogenesis could be enhanced by inhibiting specific pathways or combining it with 

other molecules. Combination of VEGF with SB-431542, an inhibitor of TGF-β1 signaling, has 

been shown to markedly promote SHED differentiation toward endothelial cells, since Smad1/2 

inhibition is correlated with VEGFR2 activation.(175) IGF-1 (182) and SDF-1α (179) were also 

reported to have a synergistic effect in enhancing angiogenesis when combined with VEGF.  

PDGF-BB alone induces capillary sprouting, and this phenomenon could be enhanced by 

bFGF.(168) bFGF alone could induce angiogenesis, but its angiogenic potential is lower than 

VEGF.(157) PDGF-BB has been reported to promote blood vessels maturation by regulating the 

investment of smooth muscle cells to DPSCs-derived capillaries through PDGFRβ and Akt 

phosphorylation in both types of cells.(168) In addition, DPSCs-derived smooth muscle cells that 

are produced after TGF-β1 treatment have been reported to stabilize blood vessels through 

ANGPT1/Tie2 and VEGF/VEGFR2 signaling.(149) Combination of PDGF-BB and TGF-β1 

induces the expression of smooth muscle-specific early, mid, and late markers, as well as 

enhances contraction ability in DPSCs, although the cells do not undergo morphological 

alterations toward smooth muscle-specific cell shapes.(150)  

  

Signaling Molecules Related to Neurogenesis 

NGF, BDNF and bFGF have been reported to induce neurogenesis (Table 4). In several 

neurogenesis induction studies, NGF and BDNF are combined with other neurotrophin and non-

neurotrophin signaling molecules.(156,188,193) Meanwhile, bFGF is usually combined with 

epidermal growth factor (EGF) for neural induction.(167) Addition of these molecules increases 

the expression levels of neural markers and promotes morphological alterations of the treated 
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cells toward neuronal and glial cells.(156,192,197) These molecules have also been reported to 

induce axonal sprouting and promote axonal growth.(167,191) 

NGF and BDNF induce neurogenesis via non-specific activation of p75 neurotrophin 

receptor (p75NTR). In addition, NGF specifically activates tropomyosin-related kinase A 

(TrkA), while BDNF specifically activates TrkB.(198) Meanwhile, bFGF induces neurogenesis 

via activation of FGFR (199). Activation of these receptors have been reported to induce the 

phospholipase C (PLC)-γ pathway, which in turn promotes neuronal differentiation.(198,199) 

Besides, combination of bFGF and NGF also stimulates neuronal differentiation via PI3K/Akt 

and Erk pathways.(156)  

 

Future Perspectives on the Use of Dental Stem Cells, Scaffold, and Signaling Molecules 

Combination in Regenerative Endodontics 

 Numerous studies have reported successful pulp-dentin complex regeneration using 

specific combinations of dental stem cells, scaffold, and signaling molecules. Despite most of the 

ongoing regenerative endodontics studies using these combinations are conducted in animal 

models (23,200), these combinations were also reported to induce pulp-dentin regeneration in 

human subjects. Several examples of dental stem cells, scaffold, and signaling molecules 

combination that have been known to regenerate human pulp-dentin complex are combination of 

hpDPSCs, G-CSF, and atelocollagen scaffold (31,32), as well as combination of DPSCs and L-

PRF (30), which acts as scaffold and contains PDGF and TGF-β.(201) Indeed, the regenerative 

endodontics field is constantly growing. There will be new findings and innovation regarding 

dental stem cell biology, the development of new types of scaffolds, and the best way to deliver 

stem cells and signaling molecules to the root canal, which open a new perspective on a new era 
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of endodontic therapy. Thus, current trends and future directions on regenerative endodontics 

should be further explored. 

In most pulp-dentin regeneration studies using human subjects, a scaffold that already 

contains dental stem cells and immobilized signaling molecules is directly transplanted to the 

root canal in a single appointment.(30-32) Despite the success of this current protocol in 

regenerating functional pulp-dentin complex, the current procedure might not be similar to the 

natural process of pulp-dentin regeneration, which involves specific cellular processes. 

Additionally, regeneration of the pulp-dentin complex may be incomplete in some patients due to 

differences in pulp-dentin damage severity. To achieve complete pulp-dentin regeneration, 

additional dental stem cells and/or signaling molecules could be applied in the several next 

appointments. Since scaffolds have different physical characteristics and biocompatibility, 

different types of scaffolds could be used to facilitate pulp-dentin regeneration in different parts 

of teeth. Different types of dental stem cells, signaling molecules, and scaffolds could also be 

combined with other endodontic procedures, such as apexification and pulp revascularization 

(202) to enhance the regeneration process in different parts of teeth. Therefore, dental stem cell, 

scaffold, and/or signaling molecules application could be performed in multiple appointments to 

mimic the cellular processes that are involved in the regeneration process, hence gradual pulp-

dentin regeneration could be achieved.  

Although studies regarding tissue engineering-based pulp-dentin regeneration show 

promising results, there are several challenges for its future clinical translation that need to be 

addressed. Regenerated pulp-dentin complex should have a precise and highly ordered 

histological structure as compared to that in normal teeth.(4) Besides, different oral diseases, 

such as irreversible pulpitis and necrotic pulp, as well as the presence of residual bacteria and 
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lipopolysaccharide may affect the root canal microenvironment, which in turn alter the fate of 

transplanted dental stem cells.(203,204) Other factors, including age and the presence of 

systemic diseases might also affect the regeneration potential of stem cells.(4,205) Since each 

type of dental stem cell, scaffold, and signaling molecule has unique characteristics and 

functions, they can be utilized to address these challenges by combining these components 

together to achieve successful regeneration. Thus, the right combination of dental stem cells, 

scaffold, and signaling molecules is needed to enhance the pulp-dentin regeneration process. 

 

Conclusion 

 Combinations of dental stem cells, scaffold, and signaling molecules mimic the cellular 

microenvironment that is suitable for regeneration, hence they are important to achieve the 

functional pulp-dentin complex formation. Since regenerative endodontics is a constantly 

growing field, current trends and future directions in this field are still needed to be further 

explored. The right combination of dental stem cells, scaffold, and signaling molecules could be 

determined based on the patients’ characteristics. Incomplete pulp-dentin regeneration, which 

may occur in some cases, could be overcome by applying dental stem cells, scaffold, and/or 

signaling molecules in multiple appointments to achieve gradual pulp-dentin regeneration. 
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Table 1. Regenerative potential of DPSCs, SHED, and DFSCs in animal model of pulp-dentin regeneration.

Pulp- and/or Dentin-like Tissue Angiogenesis Neurogenesis

DPSC Dog

Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: DSPP

Histology:
Blood vessels in regenerated 
pulp

N/A (7-10)

Mini-pig

Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: DSP, 
DMP1, and BSP

Histology:
Blood vessels in regenerated 
pulp

N/A (11)

Ferret
Histology:
Formation of osteodentin mixed with 
loose connective tissue.

N/A N/A (12)

Rat

Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: DMP1, 
DSPP, DSP, and OPN

Histology:
Blood vessels in regenerated 
pulp

Positive immunostaining: CD31

N/A (13-15)

DPSC CD31- Dog

Histology:
- Pulp tissue regeneration
- Dentin formation

Gene expression: MMP20, syndecan 
3, TRH-DE

Positive immunostaining: BS-1 
lectin

Positive immunostaining: 
PGP9.5

(16)

Reference
Type of 
Dental 

Stem Cells

Regenerative Potential
Species



DPSC 

CD105+ Dog
Histology:
Pulp tissue regeneration

Histology:
Blood vessels in regenerated 
pulp

N/A (17)

Mobilized 
DPSC

Dog

Histology:
- Pulp tissue regeneration
- Dentin formation

Gene expression: tenascin C , 
syndecan 3 , TRH-DE , MMP20 , 
DSPP

Positive immunostaining: TRH-DE

MRI:
Signal intensity of transplanted teeth 
was similar compared with that in 
normal teeth.

Positive immunostaining: BS-1 
lectin

Laser Doppler flowmetry:
Blood flow in regenerated pulp 
tissue is similar compared to 
that in normal pulp tissue.

Positive immunostaining: 
PGP9.5

Electric pulp test:
Positive pulp sensibility 
response

(18-25)

hpDPSC Dog
Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: BS-1 
lectin

Positive immunostaining: 
PGP9.5

(25,26)

hpDPSC 
from 

deciduous 
teeth

Dog
Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: BS-1 
lectin

Positive immunostaining: 
PGP9.5

(26)

SHED Mini-pig
Histology:
- Pulp tissue regeneration
- Dentin formation

Histology:
Blood vessels in regenerated 
pulp

Positive immunostaining: CD31

Positive immunostaining: 
NeuN, neurofilament, 
CGRP, and TRPV1

(27,28)



DFSC Mini-pig

Histology:
- Pulp tissue regeneration
- Dentin formation

Positive immunostaining: DMP-1, 
DSPP, COL1, COL3

N/A N/A (29)

N/A: Not applicable; DSPP: Dentin sialophosphoprotein; DSP: Dentin sialoprotein; DMP1: Dentin matrix acidic phosphoprotein 1; BSP: 
Bone sialoprotein; OPN: Osteopontin; MMP20: Matrix metalloproteinase 20; Thyrotropin-releasing hormone-degrading enzyme: TRH-DE; 
BS-1 lectin: Bandeiraea simplicifolia  lectin 1; PGP9.5: Protein gene product 9.5; NeuN: Neuronal nuclei; CGRP: Calcitonin gene-related 
peptide; TRPV1: Transient receptor potential cation channel subfamily V member 1; COL1: Collagen type I; COL3: Collagen type III.



Table 2. Regenerative potential of DPSCs, SHED, and DFSCs in case reports and clinical trials of pulp-dentin regeneration.

Pulp- and/or Dentin-like Tissue Angiogenesis Neurogenesis

DPSC
CBCT:
- Formation of dentin bridge
- Apical canal calcification

Laser Doppler flowmetry:
Blood perfusion in the transplanted 
tooth with low mean perfusion unit.

N/A (30)

Mobilized 
DPSC

MRI:
Complete pulp regeneration

CBCT:
- Formation of lateral dentin
- Decrease in dental pulp volume

N/A
Electric pulp test:
Positive pulp sensibility response

(31)

hpDPSC

MRI:
Complete pulp regeneration

CBCT:
- Formation of lateral dentin
- Decrease in dental pulp volume

N/A
Electric pulp test:
Positive pulp sensibility response

(32)

SHED

Histology:
Regenerated pulp with odontoblast 
layer, connective tissue, and blood 
vessels.

CBCT:
Increase in dentin thickness

Laser Doppler flowmetry:
An increase in vascular formation as 
indicated by high perfusion units.

Positive immunostaining: NeuN

Electric pulp test:
Positive pulp sensibility response

(27)

Reference
Type of 

Dental Stem 
Cells

Regenerative Potential

N/A: Not applicable; CBCT: Cone beam computed tomography; MRI: Magnetic resonance imaging; NeuN: Neuronal nuclei.



Table 3. Regenerative potential of blood-derived, natural-derived polymer, and sythetic polymer bioscaffolds.

Pulp-dentin Regeneration Vascularization

BC

- Increasing root length and thickness
- Increasing dental wall thickness
- Improving bone density
- Narrowing apical width 
- Healing the periapical lesion

- Improving vitality response 
(blood pump)

(77-86)

PRP

- Increasing root length and thickness
- Increasing dental wall thickness
- Improving bone density 
- Narrowing apical width
- Healing the periapical lesion

- Improving vitality response 
(blood pump)

(77,78,80-83,85-87)

PRF

- Increasing root length and thickness
- Increasing dental wall thickness 
- Improving bone density
- Narrowing apical width 
- Healing the periapical lesion

- Improving vitality response 
(blood pump)

(80,83,84,85,87)

Types of Scaffolds
Regenerative Potential

References

Blood-derived

Natural-derived polymers



Collagen
- BC

- Increasing root length
- Enhancing mineralization of root 
canal
- Increasing dental wall thickness
- Narrowing apical width 
- Healing the periapical lesion
- Increasing intracanal connective 
tissue formation

N/A (88-92)

Gelatin
- BC

- Increasing root lenght and thickness
- Increasing root length
- Increasing dental wall thickness
- Narrowing apical width  
- Increasing intracanal connective 
tissue formation

N/A (93,94)

Chitosan
- BC
- Sodium hyaluronate
- Pectin

- Increasing root length and thickness 
- Increasing dental wall thickness
- Enhancing mineralization of root 
canal
- Narrowing apical width 
- Healing the periapical lesion 
- Increasing intracanal connective 
tissue formation

- Increasing vascularization (95,96)

Fibrin

- Increasing root length and thickness  
- Enhancing mineralization of root 
canal
- Narrowing apical width  
- Healing the periapical lesion

- Increasing vascularization
(94,97)



HA

- Increasing root length
- Enhancing mineralization of root 
canal
- Increasing dental wall thickness
- Narrowing apical width  
- Healing the periapical lesion
- Increasing intracanal connective 
tissue formation

- Increasing vascularization (73,98)

PLLA
- DPSC
- Minced-pulp MSC

- Enhance tissue mineralization
- Increase expression levels of 
DMP1, DSPP, COL1 , and OPN 
genes 

N/A (99-101)

PLGA
- DPSC
- Magnesium

- Increase bone height and volume
- Enhance bone mineralization
- Enhance surface closing

- Initiate neurovascular 
regeneration

(102,103)

PCL
- PDLSC
- Fluorapatite

- Enhance bone formation in defect 
tissue
- Improve periodontium neogenesis
- Increase expression of DMP1, 
DSPP, RUNX2, OCN, SPP1, 
COL1A1 , and GDF5 genes

N/A (104,105)

N/A: Not applicable; DMP1: Dentin matrix acidic phosphoprotein 1; DSPP: Dentin sialophosphoprotein; COL1: Collagen type I; 
OPN: Osteopontin; RUNX2: Runt-related transcription factor 2; OCN: Osteocalcin; SPP1: Secreted phosphoprotein 1; COL1A1: 
Collagen type I alpha 1; GDF5: Growth differentiation factor 5.

Synthetic biomaterial 



Table 4. Regenerative potential of signaling molecules in pulp-dentin regeneration.

Cell Migration Cell Proliferation
Pulp- and/or Dentin-like 

Tissue
Angiogenesis Neurogenesis

BMP-2
Inducing migration of 
dental pulp cells

Increasing 
proliferation of dental 
pulp cells

 Increasing ALP activity 
and mineralization
 Promoting formation of 
new dentin
 Upregulating 
differentiation markers
- Gene expression: ALP , 
RUNX2 , COL1 , DSPP , 
DMP1 , DSP , MMP20 , 
BSP , OCN , and OSX
- Protein expression: 
RUNX2, DSPP, DMP1, 
BSP, and OCN

N/A N/A (130-141)

TGF-β1
Inducing migration of 
dental pulp cells

Increasing 
proliferation of 
DPSCs and dental 
pulp cells

 Increasing ALP activity, 
mineralization, and 
collagen content
 Promoting formation of 
new dentin
 Upregulating 
differentiation markers
- Gene expression: DSPP , 
DSP , MMP20 , RUNX2 , 
DMP1 , COL1A1 , and 
BSP 
- Protein expression: N-
cadherin, TIMP1, 
COL1A1, DMP1, and BSP 
 Downregulating protein 
expression: MMP3

 Inducing smooth 
muscle cell differentation
 Maintaining blood 
vessels stability
 Upregulating 
differentiation markers
- Gene expression: 
αSMA, SM22α, CALP, 
SMTN , and MYH11 
- Protein expression: 
αSMA, SM22α, CALP, 
SMTN, ANGPT1, Tie2, 
and MYH11

N/A (137,142-151)

Signaling 
Molecule

Reference

Regenerative Potential



bFGF

Inducing migration of 
SCAP, mobilized 
DPSCs, BMMSCs, 
periodontal ligament 
fibroblasts, and 
endothelial cells

Increasing 
proliferation of 
SHED, DPSCs, 
mobilized DPSCs, 
BMMSCs, dental pulp 
cells, periodontal 
ligament fibroblasts, 
and endothelial cells

 Increasing ALP activity 
and mineralization
 Promoting formation of 
new dentin
 Upregulating 
differentiation markers
- Gene expression: DSPP , 
MMP20 , TRH-DE , ALP , 
TIMP1 , DMP1 , COL1A2 , 
OPN , and OCN
- Protein expression: DSPP, 
DMP1, TIMP1, and COL1

 Enhancing blood vessel 
formation
 Upregulating 
differentiation markers
- Gene expression: 
VEGFR2 , Tie2 , 
ANGPT1 , VWF , 
VE‐cadherin , and CD31 
- Protein expression: 
VEGFR2, Tie2, 
ANGPT1, VWF, 
VE‐cadherin, and CD31

 Inducing neuronal and 
glial differentation
 Promoting axonal 
sprouting and growth
 Upregulating 
differentiation markers
- Gene expression: 
Nestin , TUBB3 , Sox2 , 
VIM , NEFM , MAP2 , 
NEFH , GFAP , and 
S100B
- Protein expression: 
Nestin, NEFM, 
TUBB3, NeuN, GFAP, 
S100B, and MAP2

(152-168)

PDGF

Inducing migration of 
DPSCs, SHED, 
dental pulp cells, and 
smooth muscle cells

Increasing 
proliferation of 
DPSCs

 Increasing ALP activity 
and mineralization
 Promoting formation of 
new dentin
 Upregulating 
differentiation markers
- Gene expression: DMP1 , 
DSPP , and OCN
- Protein expression: 
DMP1 and DSPP

 Inducing smooth 
muscle and endothelial 
cell differentation
 Enhancing blood vessel 
formation
 Promoting blood vessel 
stabilization
 Upregulating 
differentiation markers
- Gene expression: 
αSMA , SM22α , CALP , 
SMTN , and MYH11
- Protein expression: 
αSMA, SM22α, CALP, 
SMTN, VEGFR2, Tie2, 
CD31, and VE-cadherin

N/A
(142,150,168-

174)



VEGF
Inducing migration of 
DPSCs and 
endothelial cells

Increasing 
proliferation of 
DPSCs and dental 
pulp cells

 Increasing ALP activity 
and mineralization
 Upregulating odontoblast 
markers
- Gene expression: ALP , 
OCN , OSX , DSPP , 
RUNX2 , DMP1 , COL1A2 , 
BSP , TGFB1 , and OPN
- Protein expression: 
DMP1, DSPP, and OSX

 Inducing endothelial 
cell differentation
 Enhancing blood vessel 
formation
 Promoting blood vessel 
anastomosis
 Upregulating 
differentiation markers
- Gene expression: VWF , 
VEGFR2 , VE‐cadherin , 
CD31 , VEGFR1 , 
EphrinB2 , Tie2, and 
ANGPT
- Protein expression: 
VWF, VEGFR2, 
VE‐cadherin, CD31, 
Tie2, F8

N/A
(130,136,157,1

62,175-188)

NGF
Inducing migration of 
glial cells

N/A

 Improving pulpal 
architecture and cell 
organization
 Upregulating gene 
expressions of 
differentiation markers: 
DSPP , DMP1 , and 
TGFB1

N/A

 Inducing neuronal and 
glial differentation
 Promoting axonal 
sprouting and growth
 Upregulating 
differentiation markers
- Gene expression: 
Nestin
- Protein expression: 
S100, neurofilament, 
and p75NTR

(156,188-191)

BDNF
Increasing migration 
of DPSCs

N/A N/A N/A

 Inducing neuronal and 
glial differentation
 Upregulating protein 
expressions of 
differentiation markers: 
DCX, NeuN, S100B 
and p75NTR.

(192,193)



N/A: Not applicable; ALP: Alkaline phosphatase; RUNX2: Runt-related transcription factor 2; COL1: Collagen type I; DSPP: Dentin 
sialophosphoprotein; DMP1: Dentin matrix acidic phosphoprotein 1; DSP: Dentin sialoprotein; MMP: Matrix metalloproteinase; BSP: Bone sialoprotein; 
OCN: Osteocalcin; OSX: Osterix; COL1A1: Collagen type I alpha 1; TIMP1: Tissue inhibitor of metalloproteinase 1; αSMA: Alpha smooth muscle actin, 
SM22α: Smooth muscle protein 22 alpha, CALP: Calponin, SMTN: Smoothelin, ANGPT: Angiopoietin, MYH11: Myosin heavy chain 11; TRH-DE: 
thyrotropin-releasing hormone-degrading enzyme; OPN: Osteopontin; VEGFR: vascular endothelial growth factor receptor; VWF: von Willebrand factor; 
TUBB3: tubulin beta III ; Sox2: sex determining region Y-box 2; VIM: Vimentin; NEFM: Neurofilament medium chain; MAP2: Microtubule associated 
protein 2; NEFH: Neurofilament heavy chain; GFAP: Glial fibrillary acidic protein; S100: S100 calcium binding protein; NeuN: Neuronal nuclei; 
TGFB1: Transforming growth factor beta 1; F8: Coagulation factor VIII; p75NTR: p75 neurotrophin receptor; DCX: Doublecortin.




