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This research offers an in-depth exploration of the mechanical behavior of square steel
tubular columns reinforced with concrete under axial compression. The study
particularly focuses on how initial conditions, including initial stress and structural
defects, influence the columns' performance. By employing ABAQUS for finite
element analysis, the investigation covers a broad spectrum of slenderness ratios,
systematically assessing how these factors affect the structural integrity of the columns.
The analysis reveals that while initial stress tends to reduce the peak load-bearing
capacity, it paradoxically enhances the ductility of the columns, a critical aspect of their
performance under load. Conversely, initial defects, particularly in slender columns,
exacerbate instability, leading to significant reductions in load-bearing capacity. These
findings highlight the pivotal role of initial conditions in shaping the mechanical
behavior and overall safety of steel-reinforced concrete columns. The study's insights
contribute to a deeper understanding of the load-bearing mechanisms and provide a
robust framework for improving the precision and dependability of structural design.
By integrating considerations of initial conditions into the design process, engineers can
significantly bolster the safety and durability of composite columns, especially in high-

risk applications such as high-rise buildings and bridges.

1. INTRODUCTION

Steel-reinforced concrete-filled steel tubular columns,
compared to traditional concrete-filled steel tubular (CFST)
columns, provide benefits such as enhanced bearing capacity
and improved seismic performance. Consequently, these
columns are extensively utilized in high-rise structures and
bridge construction [1]. In practical engineering, the steel tube
initially serves as a vertical support, carrying part of the
structural load. When concrete is added, it increases the
bearing capacity but introduces initial stress in the steel tube
before forming a composite structure with the concrete [2].
Additionally, during laying and hoisting, geometric deviations
in the steel tube can cause initial stress deviations, leading to
defects in the structure even before it bears any load [3]. These
initial stresses and defects reduce the overall bearing capacity
of the components and alter the load distribution within the
structure. Understanding how initial conditions impact the
load-bearing capacity of concrete-filled steel tubular columns
is crucial for improving design, ensuring structural integrity,
and enhancing safety in high-rise buildings and bridges.
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Due to the complex stress state of SRCFST structures,
research on the influence of initial conditions on the bearing
mechanism of these components is relatively scarce. Recent
investigations into the effects of initial stress and defects on
the mechanical behavior of components primarily examine
ordinary concrete-filled steel tubular columns. Research
indicates that initial stress in these columns accelerates the
elasto-plastic stage of the outer steel tube, postpones the
interaction between the steel tube and core concrete,
diminishes the confining stress of the steel tube on the concrete
during early loading phases, and ultimately reduces the overall
stiffness and load-bearing capacity of the component [4, 5].
The influence of initial stress and slenderness ratio on the
component's stiffness and load-bearing capacity is substantial;
greater initial stress and slenderness ratio lead to a more
significant reduction in the ultimate bearing capacity of the
column [6-10]. Through experimental and theoretical
approaches, Yao and Han [11], and Li et al. [12] formulated
empirical equations to calculate the bearing capacity of
concrete-filled steel tubular columns considering initial stress.

For steel-reinforced  concrete-filled steel tubular
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components, the constraint mechanism of the concrete shifts
once the steel section is embedded. The steel section and steel
tube together provide constraint for the concrete within the
steel section, while the concrete outside the steel section is
constrained by the steel tube. If the outer steel tube experiences
initial stress, the constraint mechanism for both the internal
and external concrete is altered, thereby impacting the
component's overall bearing performance. This is especially
significant for square steel tubular concrete columns, where
the outer steel tube’s constraint is primarily concentrated at the
corners. Initial stress makes the steel tube at the corners more
susceptible to yielding or buckling during loading, reducing
the constraint effect on the concrete at weaker sections. This
condition is particularly crucial for square steel tubular
concrete columns, given that the constraint of the outer steel
tube is predominantly concentrated at the corners. When initial
stress is applied, the steel tube at the corners is prone to
yielding or buckling early in the loading process. This early
deformation weakens the constraint effect on the concrete,
particularly in the weaker sections, leading to a potential
reduction in overall structural integrity. For square steel
tubular concrete columns, initial stress can cause the steel tube
at the corners to yield or buckle first, reducing the constraint
on weaker concrete sections. However, it is difficult to obtain
changes in the contact force between steel and concrete
through experimental methods alone. Therefore, it is necessary
to use finite element methods to further understand the
interaction between the internal components of SRCFST
columns, facilitating a more detailed analysis of changes in
overall bearing capacity.

For studies considering initial defects, existing research
methods mainly fall into two categories. The first is the
consistent defect mode approach, where initial geometric
imperfections are introduced to the component in a specific
configuration to simulate their effect on the component's
bearing performance [13-16]. The second is the random defect
mode method, which considers the arrangement and size of the
initial defects in the structure to be random and normally
distributed [17-20]. However, for CFST structures, the impact
of overall defects on bearing performance is more significant.
Therefore, introducing the defect application method of
buckling mode can accurately simulate the deviations in
position and size during construction. SRCFST components
are more susceptible to initial stress and defects during
construction, such as during initial hoisting and loading. If the
influence of the initial state is not explicitly considered during
construction, it can result in an overestimation of the
structure's overall load-bearing capacity. This is particularly
concerning in regions with low seismic design levels, where
the axial compression ratio of columns is generally high.
Components weakened by initial stress and defects are more
likely to fail under high loads. Therefore, examining the
effects of initial stress and defects on the axial compression
performance of square steel tubular, steel-reinforced concrete
columns is essential.

This study employs the finite element software ABAQUS
to model axial compression tests on square steel tubular
concrete-filled steel-reinforced columns, accounting for initial
stress and defects. By examining the influence of initial stress
and defects on load-displacement curves, stress distribution
across sections, and contact force magnitudes in specimens
with various slenderness ratios, the research delves into the
bearing mechanism of these columns under initial conditions.
The results aim to inform the design of steel-reinforced
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concrete components' bearing capacity in construction projects.

2. FINITE ELEMENT SIMULATION
2.1 Modeling method

2.1.1 Material constitutive

Using the numerical simulation software ABAQUS, this
study examines the axial mechanical behavior of square steel
tubular columns reinforced with concrete and steel, taking into
account initial stress and defects. Models were established for
ordinary columns, columns with initial defects, and columns
with initial stress under axial load. Each model consists of four
components: the steel tube, I-shaped steel reinforcement,
concrete, and end plates. Since the compression model of
square steel tubular steel-reinforced concrete columns with
initial stress is similar to that of ordinary square steel tubular
steel-reinforced concrete columns, ABAQUS's plastic damage
model (CDP) is employed for modeling the core concrete. The
CDP model distinguishes between the material's tensile and
compressive behaviors, effectively describing the irreversible
damage and stiffness degradation of concrete. For the
compressive stress-strain relationship, Han's [21] constitutive
model for concrete-filled square steel tubular columns is
adopted. This model captures the essential characteristics and
behavior of the concrete under compressive loading, ensuring
accurate simulation results and reliable predictions of the
columns' performance under axial loads. The expression for
this model is as follows:

2x — x?, x<1
y= ;’ X>1 (1)
Bolx — 1) + x
— £ .= 0. g L _
Wherelx_gcoyy 0_0010-00_](;: 15_(—fiSA_‘:‘)l£CC_£C+
FHt

800 - £°2-107% 1 = 1.6+ 1.5/xi o = 1, 7o

The ABAQUS's isotropic elastoplastic model is employed
for the constitutive behavior of the steel tube and section. The
stress-strain relationship utilizes Han's secondary plastic flow
constitutive model for low-carbon steel [21], which is
expressed as follows:

Eg e, &< &
2
—Ae; + Be; + C, § & =¢g,
o = Ty £ <& <8 @

$ & — &
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& — &
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where, £1=0.8f/Es; &=1.5¢1; =10¢y; £3=100ey; A = 0.2f,/
(e, — &) B=24zy; C = 0.8f, + As? — Be,.

2.1.2 Selection of elements and definition of contacts

To effectively analyze the influence of initial stress in the
steel tube on the mechanical performance of square steel
tubular steel-reinforced concrete columns, and given the
regular shape of the finite element model and ease of mesh
generation, 8-node reduced integration 3D solid elements
(C3D8R) are utilized for all component instances. This
approach enhances computational efficiency, reduces model



stiffness, and facilitates result convergence.

The interaction between the steel tube and concrete is
modeled using normal and tangential surface-to-surface
contact. Tangential behavior follows the Coulomb friction
model with a friction coefficient of 0.5, while normal behavior
is set to hard contact to prevent mesh penetration. The I-shaped
steel section is embedded into the concrete matrix using the
Embed method. The end plate's interaction with other
components is defined by the Tie constraint, ensuring a rigid
connection.

2.1.3 Meshing and boundary conditions

The model analysis is conducted in two stages. Initially,
initial stress and defects are applied to the component. To
apply initial stress to the steel tube, the initial stress coefficient
Ps is determined, and then the initial stress is applied as a load
to the steel tube in the finite element model. By editing the
keyword “initial conditions, type=stress” in the ABAQUS
input file, the initial stress field of the steel tube obtained from
the simulation is imported into the axial compression model.
This enables the finite element simulation of the axial
compression bearing capacity of the concrete-filled steel tube
with initial stress.

Initial defects are introduced using the consistent defect
mode method, where the first-order buckling mode is
incorporated into the model before applying the axial load.
The boundary conditions are defined with one end fixed and
the other end constrained in all directions except the loading
direction, where the degree of freedom is released to apply the
displacement load. The model’s schematic diagram is shown
in Figure 1.

axial force

steel bone
/1

e

~ concrete

tube

base plate

Figure 1. Finite element model

To ensure computational efficiency and mesh convergence,
all elements are meshed using the structured meshing
technique available in ABAQUS. Trial calculations indicate
that when the element size is less than H/30 (with H
representing the specimen's height), the element size
minimally affects the finite element model results. Therefore,
for computational efficiency, this study uses an element size
of 20 mm. During meshing, efforts are made to align the
element seeds between contacting elements, which improves
computational accuracy and efficiency and helps avoid
convergence issues.
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2.2 Model verification

To validate the finite element model's accuracy, typical
specimens from the literature [22, 23] were selected for
comparison. This validation included analyzing the failure
modes and load-displacement curves of these specimens.
Figures 2 and 3 show the failure modes of two specimens with
lengths L=600 mm and L= 2400 mm under axial compression
loads. For the short column under axial compression, both the
experimental and finite element simulation specimens exhibit
a bulging-type strength failure characteristic. For the long
column, both show a bending-type instability failure mode.

Figure 4 presents a comparison between the load-
displacement curves obtained from both experiments and
simulations. The simulated curves match well with the
experimental curves in overall trend peak values, and other
aspects, with errors within 10%. Figure 4(c) demonstrates the
mesh convergence validation, where the pseudo strain energy
(ALLAE) is less than 1% of the internal energy (ALLIE),
indicating good mesh convergence. Therefore, the numerical
model established in this study is effective and can be used for
subsequent data analysis.

Figure 2. Axial compression failure

Figure 3. Buckling failure
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Figure 4. Model data validation

3. ANALYSIS OF STRUCTURAL BEHAVIOR UNDER
INITIAL STRESSES AND INITIAL DEFECTS

3.1 Model parameter selection

Utilizing the wvalidated numerical model previously
described, a model of a square concrete-filled steel tubular
(CFST) short column with embedded L-shaped steel was
developed. This model aims to analyze the mechanical
behavior of these components under conditions of initial stress
and defects. Table 1 provides the primary parameters of the
specimens. The specimens have aside length b=195 mm, steel

tube wall thickness t=4.5 mm, and total length L=600-2500
mm. The steel tube has a yield strength of 289 MPa, while the
steel section has a yield strength of 338 MPa. The concrete is
designed with a target strength of C60. The I-section steel used
is 132b, with sectional dimensions of 100%<70>6>7mm and a
steel ratio of 3.9%. Initial defects are introduced with a
magnitude of L/1000 to simulate the positional and
dimensional deviations occurring during construction. The
technical specification for CFST structures [24] states that the
initial load applied during construction must not exceed 40%
of the steel tube's bearing capacity. Consequently, in this study,
the initial stress coefficient is set to 0.34.

Table 1. Key parameters of specimens

No. L(mm) B(mm) T (mm) i Fc(MPa) Fs(MPa) Fa(MPa) ps N (KN)
N-1 600 195 45 10.7 48.1 289 338 0.34 3134
-1 600 195 45 10.7 48.1 289 338 0 3106
IS-1 600 195 45 10.7 48.1 289 338 034 2711
N-2 1000 195 45 17.8 48.1 289 338 0.34 3109
1-2 1000 195 45 17.8 48.1 289 338 0 3108
IS-2 1000 195 45 17.8 48.1 289 338 0.34 2704
N-3 1500 195 45 26.6 48.1 289 338 0.34 2970
11-3 1500 195 45 26.6 48.1 289 338 0 2938
IS-3 1500 195 45 26.6 48.1 289 338 0.34 2662
N-4 2000 195 45 35.5 48.1 289 338 0.34 2863
1-4 2000 195 45 35.5 48.1 289 338 0 2789
IS-4 2000 195 45 355 48.1 289 338 0.34 2614
N-5 2500 195 45 444 48.1 289 338 0.34 2707
11-5 2500 195 45 44.4 48.1 289 338 0 2580
IS-5 2500 195 4.5 444 48.1 289 338 0.34 2532

Notes: 'N' refers to specimens subjected to normal loading; 'II' denotes specimens with initial defects under loading; 'IS' signifies specimens loaded with initial

stress.
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The initial stress coefficients calculated as follows:

Os

=¢s'fy

Bs ©)

here, o, represents the initial stress of the steel tube, ¢, denotes
the axial compression stability coefficient for the steel tube
element, and f; signifies the yield strength of the steel material.

3.2 Load-displacement curve

Figure 5 illustrates the load-displacement curves of the
specimens, clearly showing that the loading process can be
divided into four distinct stages: elastic, elasto-plastic, bearing
capacity decline, and bearing capacity stabilization, each
representing a specific phase in the mechanical behavior of the
material. For axially compressed short columns (slenderness
ratio i<20), the peak load of the specimens does not change
significantly after applying initial defects. However, for
medium and long columns (slenderness ratio (>20), the peak
bearing capacity of the specimens decreases after introducing
initial defects, and this reduction progressively increases. The
reduction rates for columns I1-3, II-4, and II-5 are 1.1%, 2.6%,
and 4.7%, respectively. Introducing initial defects also
accelerates the downward trend in the latter part of the load-
displacement curve, leading to a reduction in the specimens'
ductility. This change highlights the significant impact of
initial defects on the structural integrity and performance of
the columns.
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Figure 5. Load-displacement curves

When initial stress is applied, a significant decrease in the
peak load of the specimens is observed; however, this
reduction gradually lessens as the slenderness ratio increases.
The peak bearing capacity reduction rates for columns IS-1 to
IS-5 are 13.4%, 13%, 10.4%, 8.7%, and 6.5%, respectively.
Meanwhile, applying initial stress improves the ductility
performance of the specimens. It is evident that initial defects
primarily influence the bearing performance of medium and
long columns (slenderness ratio > 20). In contrast, the effect
of initial stress on the bearing performance of the specimens
diminishes as the slenderness ratio increases.



In reference to the displacement curves after the peak load,
as illustrated in Figure 5(a), concrete axially compressed short
columns primarily undergo strength failure when subjected to
axial load. Consequently, once the curve attains the peak load,
the steel tube’s constraint effect on the concrete is heightened.
This enhancement causes the softening phase of the concrete
to progress slowly, allowing it to retain a high strength. The
steel tube itself reaches the strengthening stage, increasing in
strength. Additionally, due to compression expansion, the
bearing cross-section increases. Therefore, without
considering the uneven failure of the concrete during the test,
the bearing capacity after the peak load would tend to increase.

As shown in Figure 5(e), before the instability failure occurs
in concrete axially compressed long columns, the strength
after the peak load slightly increases, similar to concrete short
columns. Introducing initial stress causes the steel tube to
attain a higher constraint stress earlier, resulting in a
significantly higher strength after the peak load compared to
when no initial stress is present. However, after the instability
failure occurs, the load-displacement curve decreases.

3.3 Section load distribution

The collaborative work of each component in the square
steel tubular steel-reinforced concrete column specimens is a
major factor in their bearing capacity. The load-displacement
curves for short columns (L=1000 mm) and long columns
(L=2000 mm) at the mid-section (1/2 section) are extracted
and compared, as illustrated in Figure 6 and Figure 7. The
resulting data is summarized in Table 2. The bearing capacity
of the specimens is primarily supported by the concrete, steel
tube, and steel section before the peak load is reached. Once
the peak load is exceeded, the concrete undergoes strain
softening, reducing the specimens' overall bearing capacity.

Figure 6(a) shows that for specimens with a low slenderness
ratio, the bearing capacity change in components with initial
defects is minimal. For specimens experiencing initial stress,
the components are already bearing the load at zero relative
displacement during the loading phase, attributed to the initial
stress in the steel tube. At this stage, the steel tube has not
exerted normal confinement on the concrete and has already
yielded. Further loading causes local buckling, reducing
confinement stress on the concrete and decreasing the overall
bearing capacity.

Figure 6(b) demonstrates that when the slenderness ratio of
specimens is large, the model calculation results indicate that
these specimens mainly experience instability failure.
Introducing initial defects lowers the peak loads compared to
ordinarily loaded specimens, indicating more severe bending
instability. As slenderness increases, instability failure
precedes strength failure. In these cases, although initial stress
causes early yielding of the steel tube, local buckling does not
occur before bending failure, thus reducing the impact of
initial stress on peak bearing capacity.

Table 2. Model calculation data

Component Bearing Capacity (KN) Contact
No. Steel Concrete Steel Total Pressure

Tube Bone (MPa)
N-2 1392 1198 544 3134 145
11-2 1368 1186 552 3106 13.1
1S-2 1150 1035 526 2711 105
N-5 1189 1033 485 2707 7.7
11-5 1107 998 475 2580 7.5
IS-5 1098 978 456 2532 7.2
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Figure 6. Load-deformation curves of individual components

(L=1000mm)

3.4 Analysis of contact pressure

The analysis of the contact pressure distribution in square
steel tubular steel-reinforced concrete columns is depicted in
Figure 8. The data indicates that the highest contact pressures
are found at the corners of the concrete, suggesting that these
regions are where the steel tube exerts the most significant
constraint on the concrete. By examining the contact pressure
at point A, situated at the mid-section (1/2 section) of the



specimens, it becomes evident that the lateral deformation of
concrete is more pronounced in short columns during strength
failure, in contrast to long columns during instability failure.
This leads to higher contact compressive stress of the concrete
on the steel tube in short columns, as shown in Figure 9, where
the contact pressure for short columns (L=1000 mm) surpasses
that of medium and long columns (L=2500 mm).
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Figure 9. Contact pressure curve

Initially, during the loading process, the Poisson's ratio of
the steel tube is greater than that of the concrete, resulting in
less lateral deformation of the concrete relative to the steel
tube, and thus no contact pressure is observed between them.
As plastic deformation advances, the Poisson's ratio of the
concrete progressively increases and eventually surpasses that
of the steel tube. This progression leads the concrete to start
exerting compressive pressure on the steel tube, enhancing the
load-bearing capacity due to the confinement effect provided



by the steel tube.

For short columns (L=1000mm), the contact pressure is
highest during normal loading. However, the influence of
initial stress causes the steel tube to buckle upon entering the
plastic stage, which reduces its contact pressure with the
concrete. For long columns (L=2500 mm), the effect of initial
stress is diminished by instability failure. This leads to no
substantial alteration in the contact pressure between the
concrete and the steel tube.

3.5 Concrete stress analysis

Figure 10 displays the longitudinal stress contour (S33) of
the concrete at the final loading stage, showing that the failure
mode of the specimens changes significantly as the
slenderness ratio increases. The failure of short columns is
primarily due to axial compression, whereas medium and long
columns mainly experience instability failure. The
longitudinal ultimate stress of the concrete in normally loaded
specimens is higher compared to specimens with initial states.

The strong confinement provided by the steel framework
near the steel section significantly increases the peak strength

a1
-B, L3011
R

of the concrete. This results in an 8-shaped constrained region
in the stress contour adjacent to the steel section. For
specimens with a length (L=600mm), initial defects have
almost no impact on the longitudinal stress of the concrete.
However, for specimens with initial stress, Due to the weak
confinement effect of buckling, the maximum longitudinal
stress in concrete decreased from 88 MPa to 77 MPa compared
to the case without initial stress.

For specimens with a length (L=2500mm), the longitudinal
stress distribution across the section is uneven during
instability and failure. This uneven stress distribution is
particularly pronounced in specimens with initial defects, as
illustrated in Figure10. Under the same loading displacement,
the minimum longitudinal stress of the specimen containing
initial defects is 1.79 MPa, indicating tensile stress. It can be
concluded that specimens with initial defects experience more
severe bending deformation compared to those without initial
defects. The presence of initial stresses places the steel tube at
a higher stress level, providing higher restraint stress to the
concrete. Therefore, during the bearing phase after peak load,
the ductility performance of the specimen is better with initial
stress compared to without initial stress.
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Figure 10. Longitudinal stress contour of concrete

4. CONCLUSIONS

The calculation process is divided into two stages by
introducing initial defects in the specimens and initial stress in
the steel tubes. The first stage involves calculating the effects
of initial stress, followed by assessing the impact of initial
defects. then importing the results as the initial state for the
subsequent loading stage. This approach provides a finite
element modeling method that considers the initial stress and
initial defects from the construction process.
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Compared to normal loading, the specimens' peak bearing
capacity decreases after the application of initial defects and
stress. As the slenderness ratio increases, the influence of
initial stress on overall bearing performance gradually
diminishes. For specimens with a length of 2500 mm, the
reduction in overall bearing capacity due to initial stress
decreases from 13.4% to 6.5%. Conversely, as the slenderness
ratio increases, the impact of initial defects on the overall
bearing performance gradually intensifies. For specimens with
a length of 2500 mm, the reduction in overall bearing capacity



due to initial defects increases from 1.1% to 4.7%.

The introduction of initial stress causes the steel tube to
yield and locally buckle earlier during the bearing process. At
the buckling section, the steel tube's confinement effect on the
concrete is weaker, reducing the concrete's compressive
strength. Consequently, specimens with initial stress exhibit a
lower peak bearing capacity compared to those without initial
stress. However, the presence of initial stress enhances the
steel tube's confinement stress on the concrete, resulting in
better ductility during the post-peak load-bearing stage.
Specimens with initial defects are more prone to instability
failure due to the deformation caused by the buckling mode
before loading.

In structural construction design, when the slenderness ratio
(7)) of a member is less than 20, introducing an initial stress
coefficient (5,=0.34) leads to a decrease in peak load of the
specimen by more than 10%. Therefore, it is advisable to
appropriately install external supports on the pipe to reduce the

influence of initial stress on the structural bearing performance.

When the slenderness ratio (i) of a member is greater than 20,
a 1% reduction in the buckling mode decreases the peak load
of the specimen by up to 4.7%. Therefore, during construction,
it is crucial to minimize geometric deviations of the member
to eliminate the impact of initial defects on the structure's
bearing performance.
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This research offers an in-depth exploration of the mechanical behavior of square steel
tubular columns remnforced with concrete under axial compression. The study
particularly focuses on how initial conditons, including mital stress and structural
defects, influence the columns' performance. By employing ABAQUS for [inite
element analysis, the investigation covers a broad spectrum of slenderness ratios,
systematically assessing how these factors affect the structural integrity of the columns.
The analysis reveals that while initial stress tends 1o reduce the peak load-bearing
capacity, it paradoxically enhances the ductility of the columns, a critical aspect of their
performance under load. Conversely, initial defects, particularly in slender columns,
exacerbate instability. leading to significant reductions in load-bearing capacity. These
findings highlight the pivotal role of initial conditions in shaping the mechanical
behavior and overall safety of steel-reinforced concrete columns. The study's insights
contribute to a deeper understanding of the load-bearing mechanisms and provide a
robust framework for improving the precision and dependability of siructural design.
By integrating considerations of initial conditions into the design process, engineers can
significantly bolster the safety and durability of composite columns, especially in high-
risk applications such as high-rise buildings and bridges.
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1. INTRODUCTION Due to the complex stress state of SRCFST structures,

research on the influence of initial conditions on the bearing

Stecl-reinforced concrete-filled steel tubular  columns,
compared to traditional concrete-filled steel twbular (CFST)
columns, provide benefits such as enhanced bearing capacity
and improved seismic performance. Consequently, these
columns are extensively ufilized in high-rise structures and
bridge construction [1]. In practical engineering, the steel tube
initially serves as a vertical support, carrying part of the
structural load. When concrete is added, it increases the
bearing capacity but introduces mitial stress in the steel tube
before forming a composite structure with the concrete [2].
Additionally, during laying and hoisting, geometric deviations
in the steel tube can cause initial stress deviations, leading to
defects in the structure even before it bears any load [3]. These
initial stresses and defects reduce the overall bearing capacity
of the components and alter the load distribution within the
structure. Understanding how initial conditions impact the
load-bearing capacity of concrete-filled steel tubular columns
is crucial for improving design, ensuring structural integrity,
and enhancing safety in high-rise buildings and bridges.

mechanism of these components is relatively scarce. Recent
investigations into the effects of initial stress and defects on
the mechanical behavior of components primarily examine
ordinary concrete-filled steel tubular columns. Research
indicates that initial stress in these columns accelerates the
elasto-plastic stage of the outer steel tube, postpones the
intcraction between the steel tube and core concrete,
diminishes the confining stress of the steel tube on the concrete
during early loading phases, and ultimately reduces the overall
stiffness and load-bearing capacity of the component [4, 5].
The influence of mitial stress and slenderness ratio on the
compoenent's stiffness and load-bearing capacity is substantial;
greater initial stress and slenderness ratio lead to a more
significant reduction in the ultimate bearing capacity of the
column [6-10], Through experimental and theoretical
approaches, Yao and Han [11], and Li et al. [12] formulated
empirical equations to calculate the bearing capacity of
concrete-filled steel tubular columns considering initial stress.
tubular
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components. the constraint mechanism of the concrete shifts
once the steel section is embedded. The steel section and steel
tube together provide constraint for the concrete within the
steel section, while the concrete outside the steel section is
constrained by the steel tube. If the outer steel tube experiences
initial stress, the constraint mechanism for both the internal
and external concrete is altered, thereby impacting the
component's overall bearing performance. This is especially
significant for square steel tubular concrete columns, where
the outer steel tube’s constraint is primarily concentrated at the
comers. Initial stress makes the steel tube at the corners more
susceptible to yielding or buckling during loading, reducing
the constraint effect on the concrete at weaker sections. This
condition is particularly crucial for square steel tubular
concrete columns, given that the constraint of the outer steel
tube is predominantly concentrated at the corners. When initial
stress is applied, the steel tube at the corners is prone to
yielding or buckling early in the loading process. This early
deformation weakens the constraint effect on the concrete,
particularly in the weaker sections, leading to a potential
reduction in overall structural integrity. For square steel
tubular concrete columns, initial stress can cause the steel tube
at the corners to yield or buckle first, reducing the constraint
on weaker concrete sections. However, it 1s difficult to obtain
changes in the contact force between steel and concrete
through experimental methods alone. Therefore, it is necessary
to use finite element methods to further understand the
interaction between the internal components of SRCEST
columns, facilitating a more detailed analysis of changes in
overall bearing capacity.

For studies considering initial defects, existing research
methods mainly fall into two categories. The first is the
consistent defect mode approach, where initial geometric

imperfections are introduced to the component in a specific
configuration to simulate their effect on the component's
bearing performance [13-16]. The second 1s the random defect
mode method, which considers the arrangement and size of the
initial defects in the structure to be random and normally
distributed [17-20]. However, for CFST structures, the impact
of overall defects on bearing performance is more significant.
Therefore, intoducing the defect application method of
buckling mode can accurately simulate the deviations in
position and size during construction. SRCFST components
are more susceptible to initial stress and defects during
construction, such as during initial hoisting and loading. If the
influence of the initial state is not explicitly considered during
construction, it can result in an overestimation of the
structure's overall load-bearing capacity. This is particularly
concerning in regions with low seismic design levels, where
the axial compression ratio of columns is generally high.
Components weakened by initial stress and defects are more
likely to fail under high loads. Therefore, examining the
clfects of initial stress and defects on the axial compression
performance of square steel tubular, steel-reinforced concrete
columns is essential.

This study employs the finite element software ABAQUS
to model axial compression tests on square steel tubular
concrete-filled steel-reinforced columns, accounting for initial
stress and defects. By examining the influence of initial stress
and defects on load-displacement curves, stress distribution
across sections, and contact force magnitudes in specimens
with various slenderness ratios, the research delves into the
bearing mechanism of these columns under initial conditions.
The results aim to inform the design of steel-reinforced

concrete components' bearing capacity in construction projects.

2. FINITE ELEMENT SIMULATION
2.1 Modeling method

2.1.1 Material constitutive

Using the numerical simulation software ABAQUS, this
study examines the axial mechanical behavior of square steel
tubular columns reinforced with concrete and steel, taking into
account initial stress and defects. Models were established for
ordinary columns, columns with initial defects, and columns
with initial stress under axial load. Each model consists of four
compenents: the steel tube, I-shaped steel reinforcement,
concrete, and end plates. Since the compression model of
square steel tubular steel-reinforced concrete columns with
initial stress is similar to that of ordinary square steel tubular
steel-reinforced concrete columns, ABAQUS's plastic damage
model (CDP) is employed for modeling the core concrete. The
CDP model distinguishes between the material's tensile and
compressive behaviors, effectively describing the irreversible
damage and stiffness degradation of concrete. For the
compressive stress-strain relationship, Han's [21] constitutive
model for concrete-filled square steel tubular columns is
adopted. This model captures the essential characteristics and
behavior of the concrete under compressive loading, ensuring
accurate simulation results and reliable predictions of the
columns' performance under axial loads. The expression for
this model 1s as follows:
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The ABAQUS's isotropic elastoplastic model is employed
for the constitutive behavior of the steel tube and section. The
stress-strain relationship utilizes Han's secondary plastic flow
constitutive model for low-carbon steel [21], which 1s
cxpressed as follows:
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2.1.2 Selection of elements and definition of contacts

To effectively analyze the influence of initial stress in the
steel tube on the mechanical performance of square steel
tubular steel-reinforced concrete columns, and given the
regular shape of the finite element model and case of mesh
generation, 8-node reduced integration 3D solid elements
(C3D8R) are utilized for all component instances. This
approach enhances computational efficiency. reduces model




stiffness, and facilitates result convergence.

The interaction between the steel tube and concrete is
modeled using normal and tangential surface-to-surface
contact. Tangential behavior follows the Coulomb friction
model with a friction coefficient of 0.5, while normal behavior
is set to hard contact to prevent mesh penetration. The I-shaped
steel section is embedded into the concrete matrix using the
Embed method. The end plate's interaction with other
components is defined by the Tie constraint, ensuring a rigid
connection.

2.1.3 Meshing and boundary conditions

The model analysis is conducted in two stages. Initially.,
initial stress and defects are applied to the component. To
apply initial stress to the steel tube, the initial stress coefficient
M 1s determined, and then the initial stress is applied as a load
to the steel tube in the finite element model. By editing the
keyword “initial conditions, type=stress” in the ABAQUS
input file. the initial stress field of the steel tube obtained from
the simulation is imported into the axial compression model.
This enables
compression bearing capacity of the concrete-filled steel tube
with initial stress.

Initial defects are introduced using the consistent defect
mode method, where the [irst-order buckling mode is
incorporated into the model before applying the axial load.
The boundary conditions are defined with one end fixed and
the other end constrained in all directions except the loading
direction, where the degree of freedom is released to apply the
displacement load. The model’s schematic diagram is shown
in Figure 1.

the finite element simulation of the axial

axial force
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Figure 1. Finite element model

To ensure computational efficiency and mesh convergence .
all elements are meshed using the structured meshing
technique available in ABAQUS. Trial calculations indicate
that when the element size is less than H/30 (with H
representing the specimen's height), the element size
minimally affects the finite element model results. Therefore,
for computational efficiency. this study uses an element size
of 20 mm. During meshing, efforts are made to align the
element seeds between contacting elements, which improves
computational accuracy and cfficiency and helps avoid
convergence issues,
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2.2 Model verification

To validate the finite element model's accuracy, typical
specimens from the literature [22, 23] were selected for
comparison. This validation included analyzing the failure
modes and load-displacement curves of these specimens.
Figures 2 and 3 show the failure modes of two specimens with
lengths L=600 mm and L= 2400 mm under axial compression
loads. For the short column under axial compression, both the
cxperimental and finite clement simulation specimens exhibit
a bulging-type strength failure characteristic. For the long
column, both show a bending-type instability failure mode.

Figure 4 presents a comparison between the load-
displacement curves obtained from both experiments and
simulations. match well with the
experimental curves in overall trend peak values, and other
aspects, with errors within 10%. Figure 4(c) demonstrates the
mesh convergence validation, where the pseudo strain energy
(ALLAE) is less than 1% of the internal energy (ALLIE),
indicating good mesh convergence. Therefore, the numerical
model established in this study is effective and can be used for
subsequent data analysis.

The simulated curves

Figure 3. Buckling failure
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Figure 4. Model data validation

3. ANALYSIS OF STRUCTURAL BEHAVIOR UNDER
INITIAL STRESSES AND INITIAL DEFECTS

3.1 Model parameter selection

Utilizing the wvalidated numerical model previously
described, a model of a square concrete-filled steel tubular
(CFST) short column with embedded L-shaped steel was
developed. This model aims to analyze the mechanical
behavior of these components under conditions of initial stress
and defects. Table 1 provides the primary parameters of the
specimens. The specimens have aside length b=195 mm, steel

tube wall thickness t=4.5 mm, and total length L=600-2500
mum. The steel tube has a yield strength of 289 MPa. while the
steel section has a yield strength of 338 MPa. The concrete is
designed with a target strength of C60. The I-section steel used
is 132b. with sectional dimensions of 100x70x5x7mm and a
steel ratio of 3.9%. Initial defects are introduced with a
magnitude of L/1000 to simulate the positional and
dimensional deviations occurring during construction. The
technical specification for CFST structures [24] states that the
initial load applied during construction must not exceed 40%
of the steel tube's bearing capacity. Consequently, in this study.
the initial stress coefficient is set to 0.34,

Table 1. Key parameters of specimens

No. L{imm) B{mm) T (mm) i Fe(MPa) Fs (MPa) Fa(MPa) S N (KN}
N-1 600 195 4.5 10.7 48.1 289 338 034 3134
11-1 600 195 4.5 10.7 48.1 189 338 1] 3106
15-1 600 195 4.5 10.7 48.1 189 338 034 2711
N-2 1000 195 4.5 17.8 48.1 189 338 0.34 3109
-2 1000 195 45 17.8 48.1 189 338 1] 3108
15-2 1000 195 45 17.8 48.1 189 338 034 2704
N-3 1500 195 45 26.6 48.1 189 338 034 2970
11-3 1500 195 4.5 266 48.1 284 338 1] 293y
1S-3 1500 195 45 266 48.1 189 338 0.34 2662
N4 2000 195 45 355 48.1 289 338 0.34 2863
-4 2000 195 435 355 48.1 189 338 1] 2789
1S4 2000 195 43 355 48.1 189 338 034 2614
N-5 2500 195 45 424 48.1 289 338 0.34 2107
11-5 2500 195 45 444 48.1 189 338 1] 2580
1S-5 2500 195 45 444 48.1 289 338 034 2532

Notes: 'N' refers to spacimens subjected o normal loading; 'II' denotes specimens with initial defects under loading: 1S signifies specimens loaded with inirial

stress.
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The initial stress coefficients calculated as follows:

O

= e fy (3

Bs

here. o, represents the initial stress of the steel tube. ¢, denotes
the axial compression stability coefficient for the steel tube
element, and /| signifies the yield strength of the steel material.

3.2 Load-displacement curve

Figure 5 illustrates the load-displacement curves of the
specimens, clearly showing that the loading process can be
divided into four distinct stages: elastic, elasto-plastic, bearing
capacity decline, and bearing capacity stabilization, cach
representing a specific phase in the mechanical behavior of the
material. For axially compressed short columns (slendemess
ratio i<20), the peak load of the specimens does not change
significantly after applying initial defects. However, for
medium and long columns (slendemess ratio (7=20), the peak
bearing capacity of the specimens decreases after introducing
initial defects, and this reduction progressively increases. The
reduction rates for columns 11-3, 11-4, and 11-5 are [, 1%, 2.6%,
and 4.7%, respectively. Introducing initial defects also
accelerates the downward trend in the latter part of the load-
displacement curve, leading to a reduction in the specimens'
ductility. This change highlights the significant impact of
initial defects on the structural integrity and performance of
the columns.
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Figure 5. Load-displacement curves

When initial stress is applied, a significant decrease in the
peak load of the specimens is observed; however, this
reduction gradually lessens as the slenderness ratio increases.
The peak bearing capacity reduction rates for columns IS-1 to
1S-5 are 13.4%, 13%, 10.4%, 8.7%, and 6.5%, respectively.
Meanwhile, applying initial stress improves the ductility
performance of the specimens. It is evident that initial defects
primarily influence the bearing performance of medium and
long columns (slenderness ratio > 20). In contrast, the effect
of initial stress on the bearing performance of the specimens
diminishes as the slenderness ratio increases.




In reference to the displacement curves after the peak load,
as illustrated in Figure 5(a), concrete axially compressed short
columns primarily undergo strength failure when subjected to
axial load. Consequently, once the curve attains the peak load.,
the steel tube’s constraint effect on the concrete is heightened.
This enhancement causes the softening phase of the concrete
to progress slowly, allowing it to retain a high strength. The
steel tube itself reaches the strengthening stage, increasing in
strength. Additionally, due to compression expansion, the
bearing  cross-scction Therefore,  without
considering the uneven failure of the concrete during the test,
the bearing capacity after the peak load would tend to increase.

Asshown in Figure 5(e). before the instability failure occurs
in concrete axially compressed long columns, the strength

Increascs.

after the peak load slightly increases, similar to concrete short
columns. Introducing initial stress causes the steel be to
attain a higher constraint stress earlier, resulting in a
significantly higher strength after the peak load compared to
when no initial stress is present. However. after the instability
failure accurs, the load-displacement curve decreases.

3.3 Section load distribution

The collaborative work of each component in the square
steel tubular steel-reinforced concrete column specimens is a
major factor in their bearing capacity. The load-displacement
curves for short columns (L=1000 mm) and long columns
(L=2000 mm) at the mid-section (1,2 section) are extracted
and compared, as illustrated in Figure 6 and Figure 7. The
resulting data is swmmarized in Table 2. The bearing capacity
of the specimens is primarily supported by the concrete, steel
tube, and steel section before the peak load is reached. Once
the peak load is exceeded. the concrete undergoes strain
softening, reducing the specimens' overall bearing capacity.

Figure 6(a) shows that for specimens with a low slendemess
ratio, the bearing capacity change in components with initial
defects is minimal. For specimens experiencing initial stress,
the components are already bearing the load at zero relative
displacement during the loading phase, attributed to the initial
stress in the steel tube. At this stage, the steel tube has not
exerted normal confinement on the concrete and has already
yiclded. Turther loading causes local buckling, reducing
confinement stress on the concrete and decreasing the overall
bearing capacity.

Figure 6(b) demonstrates that when the slenderness ratio of
specimens is large, the model calculation results indicate that
these specimens mainly experience instability failure.
Introducing initial defects lowers the peak loads compared to
ordinarily loaded specimens, indicating more severe bending
mstability. As slenderness increases, instability failure
precedes strength failure. In these cases. although mitial stress
causes early yielding of the steel tube, local buckling does not
occur before bending failure, thus reducing the impact of
initial stress on peak bearing capacity.

Table 2. Mode! calculation data

Component Bearing Capacity (KN) Contact
No. Steel Steel Pressure

Tube Concrete Bone Total (MPa)
N-2 1392 1198 544 34 14.5
11-2 1368 1186 552 3loe 13.1
1s-2 1150 1035 526 2711 10.5
N-5 1189 1033 485 2707 T
11-5 1107 098 475 2580 75
IS-5 1098 978 456 2532 7.2
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Figure 6. Load-deformation curves of individual components
(L=1000mm)

3.4 Analysis of contact pressure

The analysis of the contact pressure distribution in square
steel tubular steel-reinforced concrete columns is depicted in
Figure 8. The data indicates that the highest contact pressures
are found at the corners of the concrete, suggesting that these
regions are where the steel tube exerts the most significant
constraint on the concrete. By examining the contact pressure
at point A, situated at the mid-section (1/2 section) of the




specimens, it becomes evident that the lateral deformation of
concrete is more pronounced in short columns during strength
failure, in contrast to long columns during instability failure.
This leads to higher contact compressive stress of the concrete
on the steel tube in short columns, as shown in Figure 9, where
the contact pressure for short columns (L=1000 mm) surpasses
that of medium and long columns (L=2500 mm).
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Figure 8. Contact pressure contour of concrete
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Figure 9. Contact pressure curve

Initially, during the loading process, the Poisson's ratio of
the steel tube 1s greater than that of the concrete, resulting in
less lateral deformation of the concrete relative to the steel
tube. and thus no contact pressure is observed between them.
Ag plastic deformation advances, the Poisson's ratio of the
concrete progressively increases and eventually surpasses that
of the steel tube. This progression leads the concrete to start
exerting compressive pressure on the steel tube, enhancing the
load-bearing capacity due to the confinement effect provided
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by the steel tube.

For short columns (L=1000mm). the contact pressure is
highest during normal loading. However, the influence of
initial stress causes the steel tube to buckle upon entering the
plastic stage, which reduces its contact pressure with the
concrete. For long columns (L=2500 mm), the effect of initial
stress is diminished by instability failure. This leads to no
substantial alteration in the contact pressure between the
concrete and the steel tube.

3.5 Concrete stress analysis

Figure 10 displays the longitudinal stress contour (S33) of
the concrete at the final loading stage, showing that the failure
mode of the specimens changes significantly as the
slenderness ratio increases. The failure of short columns is
primarily due to axial compression, whereas medium and long
columns mainly experience mstability faillure. The
longitudinal ultimate stress of the concrete in normally loaded
specimens is higher compared to specimens with initial states.

The strong confinement provided by the steel framework
near the steel section significantly increases the peak strength

of the concrete. This results in an 8-shaped constrained region
in the stress contour adjacent to the steel section. For
specimens with a length (L=600mm), initial defects have
almost no impact on the longitudinal stress of the concrete.
However, for specimens with mnitial stress, Due to the weak
confinement effect of buckling, the maximum longitudinal
stress in concrete decreased from 88 MPato 77 MPa compared
to the case without initial stress.

For specimens with a length (L=2500mm), the longitudinal
stress  distribution  across the section is uneven during
instability and failure. This uneven stress distribution is
particularly pronounced in specimens with initial defects, as
illustrated in Figurel0. Under the same loading displacement.
the minimum longitudinal stress of the specimen containing
initial defects is 1.79 MPa, indicating tensile stress. It can be
concluded that specimens with initial defects experience more
severe bending deformation compared to those without initial
defects. The presence of initial stresses places the steel tube at
a higher stress level, providing higher restraint stress to the
conerete. Therefore, during the bearing phase after peak load,
the ductility performance of the specimen is better with initial
stress compared to without initial stress.
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Figure 10. Longitudinal stress contour of concrete

4. CONCLUSIONS

The calculation process is divided into two stages by
mtroducing initial defects in the specimens and mitial stress in
the steel tubes. The first stage involves calculating the effects
of initial stress. followed by assessing the impact of initial
defects. then importing the results as the initial state for the
subsequent loading stage. This approach provides a finite
clement modeling method that considers the initial stress and
nitial defects from the construction process.

Compared to normal loading, the specimens' peak bearing
capacity decreases after the application of initial defects and
stress, As the slenderness ratio increascs, the influence of
initial stress on overall bearing performance gradually
diminishes. For specimens with a length of 2500 mm, the
reduction in overall bearing capacity due to initial stress
decreases from 13.4% to 6.5%. Conversely, as the slenderness
ratio increases, the impact of initial defects on the overall
bearing performance gradually intensifics. For specimens with
a length of 2500 mm, the reduction in overall bearing capacity




due to initial defects increases from 1.1% to 4.7%

The introduction of initial stress causes the steel tube to
yield and locally buckle carlier during the bearing process. At
the buckling section, the steel tube's confinement effect on the
concrete 1s weaker, reducing the concrete's compressive
strength. Consequently, specimens with initial stress exhibit a
lower peak bearing capacity compared to those without initial
stress. However, the presence of initial stress enhances the
steel tube's confinement stress on the concrete, resulting in
better ductility during the post-peak load-bearing stage.
Specimens with initial defects are more prone to instability
failure due to the deformation caused by the buckling mode
before loading.

In structural construction design, when the slenderness ratio
(/) of a member is less than 20, introducing an initial stress
coefficient (§,=0.34) leads to a decrease in peak load of the
specimen by more than 10%. Therefore, it is advisable to
appropriately install extemal supports on the pipe to reduce the

influence of initial stress on the structural bearing performance.

When the slenderness ratio (/) of a member is greater than 20,
a 1% reduction in the buckling mode decreases the peak load
of the specimen by up to 4.7%. Therefore, during construction,
it is crucial to minimize geometric deviations of the member
to eliminate the impact of initial defects on the structure's
bearing performance.
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