

JADWAL SEMINAR PROPOSAL TESIS PROGRAM STUDI MAGISTER TEKNIK ELEKTRO SEMESTER GASAL 2024/2025 (PERIODE II)

Pelaksanaan : Online di Ruang Zoom

N	Jo Hari∕7	ſanggal	Waktu	NIM & NAMA	JUDUL PROPOSAL TESIS	PEMBIMBING/PENGUJI	Ruangan
1	. Rabu,	08 Januari 2025	10.00 – 11.00	162012300001 / Muhammad Nugrah Kusumah	PERANCANGAN SENSOR GELOMBANG MIKRO BERBASIS <i>CIRCULAR SPLIT RING RESONATOR</i> DAN <i>ELECTRIC FIELD COUPLED</i> UNTUK KARAKTERISASI MATERIAL PADAT	 Pembimbing : Syah Alam, S.Pd, MT, PhD / Prof. Dr. Ir. Indra Surjati, MT, IPU Penguji Dr. Ir. Lydia Sari, ST, MT Ir. Henry Candra, ST, MT, PhD 	https://trisakti-ac- id.zoom.us/j/97389131167?pwd=S3hGQld TMCt6bzhqSS9PTEJab3NDUT09
2	. Rabu,	08 Januari 2025	11.00 – 12.00	162012300008/ Fitri Kurnia Sari	PERANCANGAN SENSOR GELOMBANG MIKRO <i>PORT</i> TUNGGAL DENGAN KOMBINASI RESONATOR <i>ELECTRIC FIELD COUPLED</i> (ELC) DAN <i>INTERDIGITAL CAPACITOR</i> (IDC) UNTUK KARAKTERISASI MATERIAL PADAT	 Pembimbing: Syah Alam, S.Pd, MT, PhD / Prof. Dr. Ir. Indra Surjati, MT, IPU Penguji Dr. Ir. Lydia Sari, ST, MT Ir. Henry Candra, ST, MT, PhD 	https://trisakti-ac- id.zoom.us/j/97389131167?pwd=S3hGQld TMCt6bzhqSS9PTEJab3NDUT09
3	. Rabu,	08 Januari 2025	13.00 – 14.00	162012300003/ Angga Septian	ANALISA SISTEM MANAJEMEN ENERGI (SME) DENGAN METODE TEKNO EKONOMI PADA GEDUNG PEMERINTAH DAERAH KHUSUS IBUKOTA (DKI) JAKARTA	 Pembimbing: Dr. Ir. Chairul Gagarin Irianto, MS / Dr. Ir. Lydia Sari, ST, MT Penguji Dr. Ir. Yuli Kurnia Ningsih, MT, IPU Dr. Ir. R Deiny Mardian, ST, MT 	https://trisakti-ac- id.zoom.us/j/97389131167?pwd=S3hGQld TMCt6bzhqSS9PTEJab3NDUT09

4.	Rabu, 08 Januari 2025	14.00 - 15.00	162012300007 / Harly	MANAJEMEN ENERGI PADA PENERANGAN JALAN UMUM DENGAN MENGGUNAKAN METODA PENCAHAYAAN ADAPTIF	 Pembimbing: ▷ Dr. Ir. Chairul Gagarin Irianto, MS / Dr. Ir. Lydia Sari, ST, MT Penguji ▷ Dr. Ir. Yuli Kurnia Ningsih, MT, IPU ▷ Dr. Ir. R Deiny Mardian, ST, MT
5.	Rabu, 08 Januari 2025	15.30 – 16.30	162012300006 / Agung Setiaji	EVALUASI PERFORMANSI <i>FIXED</i> WIRELESS ACCESS (FWA) DI SISI PELANGGAN DALAM KONDISI KONFIGURASI TEKNOLOGI <i>MULTIPLE</i> INPUT MULTIPEL OUTPUT (MIMO) PADA BASE TRANSCEIVER STATION (BTS) YANG BERAGAM	Pembimbing: https://trisakti-ac- ▶ Dr. Ir. R Deiny Mardian, ST, MT id.zoom.us/j/97389131167?pwd=S3hGQld / Dr. Ir. Lydia Sari, ST, MT IMCt6bzhqSS9PTEJab3NDUT09 Penguji Prof. Dr. Ir. Indra Surjati, MT, IPU ▶ Syah Alam, S.Pd, MT, PhD
6.	Kamis, 09 Januari 2025	10.00 - 11.00	162012300002 / Abudhiya Harits Ulhaq Hadyan	ANALISIS DAN OPTIMALISASI PENGUNAAN ENERGI DI INDUSTRI ELEKTRONIK DALAM PENERAPAN SISTEM MANAJEMEN ENERGI BERBASIS ISO 50001:2018	Pembimbing: https://trisakti-ac- ▶ Dr. Ir. Chairul Gagarin Irianto, id.zoom.us/j/97389131167?pwd=S3hGQld MS / Syah Alam, S.Pd, MT, PhD IMCt6bzhqSS9PTEJab3NDUT09 Penguji ▶ ▶ Dr. Ir. Yuli Kurnia Ningsih, MT, IPU ▶ Dr. Ir. R Deiny Mardian, ST, MT
7.	Kamis, 09 Januari 2025	11.00 - 12.00	162012300005 / Muhammad Khaidir	ANALISIS ELEKRIKAL DCDV – <i>DATA CENTER DESIGN VALIDATION</i> TERHADAP SERTIFIKASI ANSI/TIA-942B	Pembimbing: https://trisakti-ac- ▶ Dr. Ir. Chairul Gagarin Irianto, MS / Syah Alam, S.Pd, MT, PhD id.zoom.us/j/97389131167?pwd=S3hGQld Penguji TMCt6bzhqSS9PTEJab3NDUT09 Penguji Dr. Ir. Yuli Kurnia Ningsih, MT, IPU ▶ Dr. Ir. R Deiny Mardian, ST, MT

8.	Kamis, 09 Januari 2025 13.00 – 14.00 1	162012300010 /	ANALISA KINERJA SDN	Pembimbing: https://trisakti-ac-
	A	Andree Ardiansjah K	CONTROLLER BERBASIS SEGMENT	Dr. Ir. R. Deiny Mardian, ST, MTid.zoom.us/j/97389131167?pwd=S3hGQld
		-	ROUTING IPV6 (SRV6) TERHADAP	/ Ir. Henry Candra, ST, MT, PhD TMCt6bzhqSS9PTEJab3NDUT09
			PERFORMA KUALITAS JARINGAN	
			TELEKOMUNIKASI	Penguji
				Prof. Dr. Ir. Indra Surjati, MT,
				IPU
				Dr. Ir. Yuli Kurnia Ningsih, MT,
				IPU
9.	Kamis, 09 Januari 2025 14.00 – 15.00 U	Uud Suseno Waji /	KLASIFIKASI MASALAH <i>PACKET LOSS</i>	Pembimbing: https://trisakti-ac-
	1	162012300009	PADA JARINGAN	Dr. Ir. R. Deiny Mardian, ST, MTid.zoom.us/j/97389131167?pwd=S3hGQld
			TRANSPORT TELEKOMUNIKASI LTE	/ Dr. Ir. Yuli Kurnia Ningsih, <u>TMCt6bzhqSS9PTEJab3NDUT09</u>
			MENGGUNAKAN <i>TWO-WAY</i>	MT, IPU
			ACTIVE MASUREMENT PROTOCOL	
			(TWAMP) BERDASARKAN ANALISIS QoS	Penguji
			DSCP 26 DAN 48	Prof. Dr. Ir. Indra Surjati, MT,
				IPU
				Ir. Henry Candra, ST, MT, PhD

Syarat dan Ketentuan :

- 1. Proposal lengkap sesuai dengan template yang ditetapkan oleh Fakultas (<u>http://fti.trisakti.ac.id/uploads/fti/downloads/lampiran-tugas-akhir.pdf</u>)
- 2. Slide Power Point materi proposal tesis.
- 3. Bukti hasil pemeriksaan *similarity* (Turnitin) dari Sekertariat Program Studi Magister Teknik Elektro, ambang batas similarity adalah tidak lebih dari 20% (*)
- 4. *Softcopy* KRS semester Gasal 2024/2025
- 5. Softcopy Transkrip terakhir, minimal telah menyelesaikan 29 SKS (mata kuliah wajib dan konsentrasi keahlian)
- 6. Tidak memiliki nilai kurang dari B untuk seluruh mata kuliah pada Kurikulum Program Magister Teknik Elektro
- 7. Mahasiswa mempresentasikan proposal tesis sesuai dengan jadwal seminar dengan durasi maksimal 15 menit
- 8. Revisi proposal tesis dikirimkan paling lambat 1 minggu ke email thesis-mte@trisakti.ac.id

Jakarta, 03 Januari 2025

Program Studi Magister Teknik Elektro FTI – Usakti

👺 Meeting

Ŷ.

0

• • •

 \odot

🕲 PowerPoint Slide Show - (2_PPT Proposal Tesis_162012300008_Fitri Kurnia Sari] - PowerPoint

Latar Belakang

Rumusan &

Tujuan

Manfaat & Batasan

Kajian Pustaka

Metodologi Penelitian

Slide 1 of 30

Proposal Tesis

Perancangan Sensor Gelombang Mikro *Port* Tunggal dengan Kombinasi Resonator *Electric Field Coupled* (ELC) dan *Interdigital Capacitor* (IDC) untuk Karakterisasi Material Padat

Fitri Kurnia Sari 162012300008

FORMULIR PENILAIAN OLEH DOSEN PENGUJI PROPOSAL TESIS

Nama Mahasiswa	: Fitri Kurnia Sari
NIM	: 162012300008
Peminatan	: Telekomunikasi
Judul	: PERANCANGAN SENSOR GELOMBANG MIKRO PORT
	TUNGGAL DENGAN KOMBINASI RESONATOR
	ELECTRIC FIELD COUPLED (ELC) DAN INTERDIGITAL
	CAPACITOR (IDC) UNTUK KARAKTERISASI MATERIAL
	PADAT

				Nilai	
No	Kriteria Penilaian	Uraian Penilaian	Angka	Bobot	Angka x Bobot
1	Penulisan Proposal (20%)	Kejelasan tulisan dan bahasa yang digunakan.	90	10%	9
		Jumlah dan relevansi referensi primer (tesis, jurnal,prosiding, dll) yang digunakan (Catatan1)	85	5%	4,25
		Kebaruan dan mutu referensi	85	5%	4,25
2	Presentasi (10%)	Penyajian secara jelas, runut, tepat waktu	90	10%	9
3	Materi (50%)	Kejelasan identifikasi dan rumusan masalah	85	5%	4,25
		Kejelasan penulisan tujuan	85	5%	4,25
		Kejelasan dan kesesuaian rencana penyelesaian masalah (metodologi) dengan tujuan	85	10%	8,5
		Kebaruan materi (up to date)	85	10%	8,5
		Adanya perancangan sistem/ komponen/proses dan kompleksitas rancangan(Catatan 2)	85	20%	17
4	Penguasaan materi (20%)	Penguasaan materi	90	10%	9
		Penguasaan teori dasar	90	10%	9
		Jumlah			87

Kesimpulan: layak/tidak layak*) dilanjutkan sebagai Tesis

*) coret yang tidak sesuai

Catatan:

- Jumlah dan relevansi referensi primer:
 <5 nilai 70; 5 ≤jml ref ≤10 nilai 80;
 11 ≤jml ref ≤20 nilai 90; ≥ 50 nilai 100.
- 2. Bila tidak ada perancangan nilai 50.

Jakarta, 08 Januari 2025 Dosen Penguji

ypi

(Dr. Ir. Lydia Sari, ST, MT)

REKOMENDASI PERBAIKAN PROPOSAL TESIS

Nama	:	Fitri Kurnia Sari					
NIM	:	162012300008					
Judul	:	PERANCANGAN	SENSOR	GELOM	BANG	MIKRO	PORT
		TUNGGAL DENGA	AN KOMB	INASI I	RESONA	TOR ELE	ECTRIC
		FIELD COUPLED (F	ELC) DAN	INTERDI	GITAL C.	APACITO	R (IDC)
		UNTUK KARAKTE	RISASI MA	TERIAL	PADAT		

HAL-HAL YANG HARUS DIPERBAIKI

- 1. Perbaiki penulisan di halaman 5 (Sensor Gelombang Mikro (Gelombang mikro Sensor MS))
- 2. Persamaan 2 halaman 7 dan persamaan 5 halaman 8, cek kembali
- 3. Persamaan untuk Normalized Sensitivity dicek kembali

Jakarta, 08 Januari 2025 Dosen Penguji

(Dr. Ir. Lydia Sari, ST, MT)

Catatan :

Formulir ini diisi apabila mahasiswa dinyatakan lulus dengan catatan harus memperbaiki proposal atau tidak lulus ujian proposal Tesis dan harus dilampirkan pada proposal Tesis berikutnya.

FORMULIR PENILAIAN OLEH DOSEN PENGUJI PROPOSAL TESIS

Nama Mahasiswa	: Fitri Kurnia Sari
NIM	: 162012300008
Peminatan	: Telekomunikasi
Judul	: PERANCANGAN SENSOR GELOMBANG MIKRO PORT
	TUNGGAL DENGAN KOMBINASI RESONATOR
	ELECTRIC FIELD COUPLED (ELC) DAN INTERDIGITAL
	CAPACITOR (IDC) UNTUK KARAKTERISASI MATERIAL
	PADAT

				Nilai	
No	Kriteria Penilaian	Uraian Penilaian	Angka	Bobot	Angka x Bobot
1	Penulisan Proposal (20%)	Kejelasan tulisan dan bahasa yang digunakan.	84	10%	8,4
		Jumlah dan relevansi referensi primer (tesis, jurnal,prosiding, dll) yang digunakan (Catatan1)	84	5%	4,2
		Kebaruan dan mutu referensi	84	5%	4,2
2	Presentasi (10%)	Penyajian secara jelas, runut, tepat waktu	84	10%	8,4
3	Materi (50%)	Kejelasan identifikasi dan rumusan masalah	84	5%	42
		Kejelasan penulisan tujuan	84	5%	4,2
		Kejelasan dan kesesuaian rencana penyelesaian masalah (metodologi) dengan tujuan	84	10%	8,4
		Kebaruan materi (up to date)	84	10%	8,4
		Adanya perancangan sistem/ komponen/proses dan kompleksitas rancangan(Catatan 2)	84	20%	16,8
4	Penguasaan materi (20%)	Penguasaan materi	84	10%	8,4
		Penguasaan teori dasar	84	10%	8,4
		Jumlah			84

Kesimpulan: layak/tidak layak*) dilanjutkan sebagai Tesis

*) coret yang tidak sesuai

Catatan:

- Jumlah dan relevansi referensi primer:
 <5 nilai 70; 5 ≤jml ref ≤10 nilai 80; 11 ≤jml ref ≤20 nilai 90; ≥ 50 nilai 100.
 Bila tidak ada perancangan nilai 50.

Jakarta, 08 Januari 2025 Dosen Penguji

(Ir. Henry Candra, ST, MT, PhD)

REKOMENDASI PERBAIKAN PROPOSAL TESIS

Nama	:	Fitri Kurnia Sari					
NIM	:	162012300008					
Judul	:	PERANCANGAN	SENSOR	GELOMBA	ANG MI	KRO	PORT
		TUNGGAL DENGA	AN KOMB	SINASI RE	SONATO	R ELE	CTRIC
		FIELD COUPLED (I	ELC) DAN	INTERDIGI	TAL CAPA	<i>ICITOR</i>	(IDC)
		UNTUK KARAKTE	RISASI MA	TERIAL PA	DAT		

HAL-HAL YANG HARUS DIPERBAIKI

- 1. rumusan masalah: kombinasi ELC dan IDC, dimunculkan dan diperkuat di latar belakang.
- 2. rumus: tambahkan notasi dan satuan
- 3. Subbab 7. Penelitian pendahuluan: buat flowchart perancangan
- 4. Jenis material padat apa yang akan diuji

5.

akarta, 08 Januari 2025 Dosen Penguji

(Ir. Henry Candra, ST, MT, PhD))

Catatan :

Formulir ini diisi apabila mahasiswa dinyatakan lulus dengan catatan harus memperbaiki proposal atau tidak lulus ujian proposal Tesis dan harus dilampirkan pada proposal Tesis berikutnya.

FORMULIR PENILAIAN OLEH DOSEN PENGUJI PROPOSAL TESIS

Nama Mahasiswa	: Fitri Kurnia Sari
NIM	: 162012300008
Peminatan	: Telekomunikasi
Judul	: PERANCANGAN SENSOR GELOMBANG MIKRO PORT
	TUNGGAL DENGAN KOMBINASI RESONATOR
	ELECTRIC FIELD COUPLED (ELC) DAN INTERDIGITAL
	CAPACITOR (IDC) UNTUK KARAKTERISASI MATERIAL
	PADAT

				Nilai	
No	Kriteria Penilaian	Uraian Penilaian	Angka	Bobot	Angka x Bobot
1	Penulisan Proposal (20%)	Kejelasan tulisan dan bahasa yang digunakan.	90	10%	9
		Jumlah dan relevansi referensi primer (tesis, jurnal,prosiding, dll) yang digunakan (Catatan1)	90	5%	4.5
		Kebaruan dan mutu referensi	90	5%	4.5
2	Presentasi (10%)	Penyajian secara jelas, runut, tepat waktu	90	10%	9
3	Materi (50%)	Kejelasan identifikasi dan rumusan masalah	90	5%	4.5
		Kejelasan penulisan tujuan	90	5%	4.5
		Kejelasan dan kesesuaian rencana penyelesaian masalah (metodologi) dengan tujuan	90	10%	9
		Kebaruan materi (up to date)	90	10%	9
		Adanya perancangan sistem/ komponen/proses dan kompleksitas rancangan(Catatan 2)	90	20%	18
4	Penguasaan materi	Penguasaan materi	90	10%	9
	(==, , , ,	Penguasaan teori dasar	90	10%	9
		Jumlah			90

Kesimpulan: layak/tidak layak*) dilanjutkan sebagai Tesis

*) coret yang tidak sesuai

Catatan:

- Jumlah dan relevansi referensi primer:
 <5 nilai 70; 5 ≤jml ref ≤10 nilai 80;
 11 ≤jml ref ≤20 nilai 90; ≥ 50 nilai 100.
- 2. Bila tidak ada perancangan nilai 50.

Jakarta, 08 Januari 2025 Dosen Penguji

-onthe

Syah Alam, S.Pd, MT, PhD

Prof. Dr. Ir. Indra Surjati, MT, IPU

REKOMENDASI PERBAIKAN PROPOSAL TESIS

Nama	:	Fitri Kurnia Sari	
NIM	:	162012300008	
Judul	:	PERANCANGAN SENSOR GELOMBANG MIKRO	PORT
		TUNGGAL DENGAN KOMBINASI RESONATOR ELEC	CTRIC
		FIELD COUPLED (ELC) DAN INTERDIGITAL CAPACITOR	(IDC)
		UNTUK KARAKTERISASI MATERIAL PADAT	

HAL-HAL YANG HARUS DIPERBAIKI

- 1. Perbaiki sesuai dengan rekomendasi dari penguji
- 2. Teori perturbasi dijelaskan lebih detail
- 3. Perbaiki rumus Normalized Sensitivity
- 4. Cek kembali target untuk parameter yang ditentukan termasuk NS, Akurasi dll
- 5. Abstrak disesuaikan dengan latar belakang (kontribusi utama perlu dijelaskan)
- 6. Rumusan masalah perlu dibuat lebih detail disesuaikan dengan literatur review yang diusulkan di Tabel 2. Spesifikasi Alat
- 7. Urutan referensi tabel disesuaikan dengan nomor referensi.
- 8. Gambar deteksi tan delta
- 9. Rumus ditambahkan notasi dan satuan
- 10. Ditambahkan diagram alir penelitian yang ditampilkan hanya diagram alir perancangan

Jakarta, 08 Januari 2025 Dosen Penguji

-only

Syah Alam, S.Pd, MT, PhD

Prof. Dr. Ir. Indra Surjati, MT, IPU

Catatan :

Formulir ini diisi apabila mahasiswa dinyatakan lulus dengan catatan harus memperbaiki proposal atau tidak lulus ujian proposal Tesis dan harus dilampirkan pada proposal Tesis berikutnya.

TABEL REVISI PROPOSAL TESIS – 162012300008 – FITRI KURNIA SARI

Penguji 1 : Dr. Lydia Sari, ST, MT..

No	Komentar	Perbaikan	
	Perbaiki penulisan di halaman 5 (Sensor	Sudah diperbaiki	
1.	Gelombang Mikro (Gelombang mikro Sensor -		
	MS))		
2	Persamaan 2 halaman 8 dan persamaan 5	Sudah dinarhailti	
۷.	halaman 9, cek kembali	Sudan diperbarki	
2	Persamaan untuk Normalized Sensitivity dicek	Sudah diperhaiki (halaman Q)	
5.	kembali	Sudan diperbarki (fiatalitali 9)	

NOTE : Untuk perbaikan diberi highlight kuning

Penguji 2 : Ir. Henry Candra, ST, MT, Ph.D

No	Komentar	Perbaikan	
1.	Rumusan masalah: kombinasi ELC dan IDC, dimunculkan dan diperkuat di latar belakang.	Sudah diperbaiki (halaman 4)	
2.	Rumus: tambahkan notasi dan satuan	Sudah diperbaiki (halaman 7–9 dan halaman 14)	
3.	Subbab 7. Penelitian pendahuluan: buat flowchart perancangan	Sudah ditambahkan (halaman 21 – 22)	
4.	Jenis material padat apa yang akan diuji	Sudah ditambahkan tabel (halaman 24)	

NOTE : Untuk perbaikan diberi highlight hijau

Pembimbing :

Syah Alam, S.Pd, MT, PhD

Prof. Dr. Ir. Indra Surjati, MT, IPU

No	Komer	ntar	Perbaikan		
1.	Perbaiki sesuai dengan rel	komendasi dari			
	penguji		Sudah diperbaiki		
2.	Teori perturbasi dijelaska	n lebih detail	Sudah dijelaskan (halaman 8)		
3.	Perbaiki rumus Normalize	ed Sensitivity	Sudah diperbaiki (halaman 9)		
4	Cek kembali target untuk	parameter yang			
4.	ditentukan termasuk NS, A	Akurasi dll	Sudah dicek kembali		
5	Abstrak disesuaikan deng	an latar belakang	Sudah digaguaikan		
5.	(kontribusi utama perlu di	ijelaskan)	Sudan disesuaikan		
	Rumusan masalah perlu d	libuat lebih detail			
	disesuaikan dengan literat	tur review yang			
	diusulkan di Tabel 2. Spe	sifikasi Alat			
	Parameter	Target			
6.	Frekuensi Kerja	1 – 3 GHz	Sudah disesuaikan (halaman 4 – 5)		
	S ₁₁	\leq -10 dB			
	Sensitivitas yang dinormalisasi	> 0.5 %			
	Akurasi	> 90%			
	Frequency Detection Resolution < 0.02				
	Urutan referensi tabel disesuaikan dengan				
7.	nomor referensi		Sudah disesuaikan		
8.	Gambar deteksi tan delta		Sudah diperbesar skalanya (halaman 46)		
			Sudah diperbaiki (halaman 7–9 dan		
9.	Rumus ditambahkan notasi dan satuan				
			halaman 14)		
10.	Ditambahkan diagram ali	r perancangan	Sudah ditambahkan (halaman 21 – 22)		

NOTE : Untuk perbaikan diberi highlight biru

Perancangan Sensor Gelombang Mikro *Port* Tunggal dengan Kombinasi Resonator *Electric Field Coupled* (ELC) dan *Interdigital Capacitor* (IDC) untuk Karakterisasi Material Padat

> PROPOSAL TESIS Disusun oleh: Fitri Kurnia Sari FTI / MTE : 162012300008

MAGISTER TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS TRISAKTI JAKARTA 2024

ABSTRAK

Sensor merupakan perangkat yang digunakan untuk mendeteksi, mengukur, dan menganalisis parameter fisik atau kimia tertentu, sehingga memainkan peran penting dalam berbagai aplikasi teknologi. Salah satu jenis sensor yang berkembang pesat adalah sensor gelombang mikro. Sensor ini dikenal memiliki performansi tinggi, terutama dalam hal akurasi dan sensitivitas, sehingga menjadi solusi yang andal untuk berbagai kebutuhan pengukuran. Namun, kebanyakan sensor gelombang mikro dirancang menggunakan pendekatan *dual port*. Meskipun efektif, pendekatan ini cenderung memiliki desain yang lebih kompleks dan memerlukan proses pengukuran yang lebih rumit. Oleh karena itu, diperlukan inovasi untuk menyederhanakan desain sekaligus mempertahankan atau meningkatkan performansi sensor.

Penelitian ini mengusulkan pengembangan sensor gelombang mikro berbasis *port* tunggal yang dirancang untuk mendeteksi permitivitas material padat dalam rentang permitivitas 1–10. Sensor ini menggunakan pendekatan resonator port tunggal yang dikombinasikan dengan *Electric Field Coupled* (ELC) dan *Interdigital Capacitor* (IDC). Kombinasi teknologi ini bertujuan untuk memfokuskan konsentrasi medan listrik, sehingga memungkinkan pengukuran permitivitas dengan lebih akurat dan sensitif. Target dari penelitian ini adalah menghasilkan sensor gelombang mikro dengan performansi optimal, meliputi nilai *return loss* (S₁₁) \leq -10 dB, sensitivitas yang dinormalisasi (*Normalized Sensitivity*) > 0.5%, akurasi > 90%, dan *Frequency Detection Resolution* (FDR) < 0.02. Rentang frekuensi kerja sensor ini adalah 1–3 GHz, yang relevan untuk berbagai aplikasi, termasuk dalam pengukuran material dielektrik pada industri elektronik, material, dan telekomunikasi.

Dengan mengadopsi pendekatan *port* tunggal, desain sensor menjadi lebih sederhana tanpa mengorbankan performansi. Hal ini tidak hanya mengurangi kompleksitas manufaktur, tetapi juga mempermudah proses pengukuran dan meningkatkan efisiensi. Hasil penelitian ini diharapkan dapat berkontribusi pada pengembangan sensor gelombang mikro berbasis resonator ELC dan IDC dengan desain port tunggal, yang mampu mendeteksi material dalam rentang permitivitas 1-10 pada rentang frekuensi 1-3 GHz. Sensor ini dirancang untuk mencapai kinerja optimal, menawarkan sensitivitas tinggi dan akurasi yang baik dalam aplikasi karakterisasi material dielektrik, juga signifikan terhadap pengembangan teknologi sensor gelombang mikro yang inovatif dan efektif, sekaligus membuka peluang aplikasi yang lebih luas dalam bidang sains dan teknologi.

Kata Kunci : Sensor gelombang mikro, *single port*, resonator, ELC, IDC, target, performansi optimal.

1. Latar Belakang Masalah

Perkembangan sistem komunikasi akhir-akhir ini sangat pesat untuk mendukung industri 4.0. Semua perangkat yang mendukung suatu sistem dapat dihubungkan menggunakan *Internet of Things* (IoT) [1]. Salah satu tantangan dalam pengembangan ini adalah bagaimana sebuah perangkat dapat terhubung dan terintegrasi dengan perangkat lain secara nirkabel [2].

Sensor adalah perangkat yang menerima berbagai jenis sinyal, seperti sinyal fisik, kimia, atau biologi. Sensor diklasifikasikan menjadi berbagai jenis berdasarkan aplikasi, sinyal masukan, dan mekanisme konversi, serta bahan yang digunakan dalam karakteristik sensor seperti biaya, akurasi, atau rentang [3]. Sensor gelombang mikro adalah alat yang memanfaatkan gelombang mikro untuk mendeteksi keberadaan objek atau gerakan di sekitarnya. Alat ini mengeluarkan sinyal gelombang mikro dan kemudian menganalisis pantulan dari sinyal tersebut untuk mengetahui posisi dan jarak objek. Teknologi ini banyak diterapkan dalam berbagai bidang, seperti sistem pencahayaan otomatis, keamanan, dan otomasi industri [4].

Sensor gelombang mikro telah mengalami perkembangan yang luas untuk mengevaluasi baik *solids* maupun *liquids* material, berkat sejumlah keuntungan yang dimilikinya, seperti akurasi tinggi, *Q-factor* yang tinggi, biaya yang terjangkau, dan ukuran yang kompak [5]. Sensor digunakan untuk mendeteksi perubahan dalam karakteristik bahan tertentu dalam kondisi lingkungan yang spesifik. Salah satu karakteristik bahan yang dapat diamati adalah permitivitas [6]. Permitivitas merujuk pada kemampuan suatu bahan untuk mempertahankan medan listrik [7].

Sensor gelombang mikro umumnya dirancang dengan pendekatan *dual port*, menggunakan baik filter *band-pass* maupun *band-stop* [8]. Pendekatan ini memungkinkan pemrosesan sinyal gelombang mikro dengan tingkat akurasi yang tinggi, sehingga meningkatkan performa dalam mendeteksi atau mengukur parameter tertentu. Namun, desain ini juga membawa tantangan besar, terutama terkait kompleksitas struktur dan proses fabrikasi yang memerlukan presisi tinggi [9].

Kompleksitas tersebut tidak hanya muncul dalam proses fabrikasi, tetapi juga dalam pengaturan pengukuran. Sensor *dual port* memerlukan konfigurasi yang lebih rumit karena melibatkan dua jalur sinyal yang harus diukur secara bersamaan, yang menuntut peralatan tambahan dan metode pengukuran yang lebih teliti untuk memastikan akurasi

hasil [10]. Akibatnya, penerapan sistem sensor berbasis *dual port* bisa menjadi kurang efisien dalam aplikasi yang membutuhkan proses cepat dan sederhana [11].

Penelitian ini dilakukan untuk merancang sensor gelombang mikro dengan konfigurasi single port, yang menawarkan desain lebih sederhana dan efisien dibandingkan konfigurasi dual port. Sensor pada penelitian ini berbasis pada resonator Electric Field Coupled (ELC) yang dikombinasikan dengan Interdigital Capacitor (IDC). Kombinasi ELC dan IDC dalam sensor gelombang mikro menawarkan berbagai keunggulan yang saling melengkapi. Salah satu keunggulan utamanya adalah sensitivitas tinggi, di mana ELC memiliki respons resonansi yang tajam terhadap perubahan parameter lingkungan, sedangkan IDC memperkuat interaksi medan listrik dengan material melalui desain elektroda interdigitalnya. Kombinasi struktur ini dirancang untuk meningkatkan konsentrasi medan listrik dan meminimalisir medan magnet di area sensing, sehingga sensitivitas dan akurasi pengukuran terhadap perubahan permitivitas material dapat ditingkatkan. Konfigurasi single port pada sensor ini juga diharapkan lebih praktis dalam proses pengukuran, sekaligus mengurangi kompleksitas dan biaya fabrikasi dibandingkan model dual port yang memerlukan dua saluran pengukuran. Dengan berbagai keunggulan ini, kombinasi ELC dan IDC pada penelitian ini dapat menjadi solusi ideal untuk pengembangan sensor gelombang mikro modern, terutama dalam aplikasi yang memerlukan sensitivitas tinggi, stabilitas frekuensi, dan efisiensi energi.

2. Rumusan Masalah

- Bagaimana merancang dan memodelkan sensor gelombang mikro berbasis resonator *port* tunggal yang dikombinasikan dengan *Electrical Field Coupled (ELC)* dan *Interdigital Capacitor* (IDC) yang memiliki frekuensi kerja 1 – 3 GHz dengan spesifikasi S₁₁ ≤ -10 dB, sensitivitas > 0.5%, akurasi > 90%, dan *Frequency Detection Resolution* (FDR) < 0.02 untuk mendeteksi permitivitas material padat dengan rentang permitivitas 1 – 10?
- Bagaimana merealisasikan sensor gelombang mikro dengan resonator *port* tunggal berbasis *Electrical Field Coupled (ELC)* dan *Interdigital Capacitor* (IDC) untuk mendeteksi permitivitas material padat dengan rentang permitivitas 1 – 10?
- Bagaimana validasi dan pengukuran sensor gelombang mikro dengan resonator *port* tunggal berbasis *Electrical Field Coupled (ELC)* dan *Interdigital Capacitor* (IDC) untuk mendeteksi permitivitas material padat dengan rentang permitivitas 1 – 10?

3. Batasan Masalah

- 1. Sensor dirancang menggunakan *software* Ansoft HFSS dengan bahan substrat FR-4 *epoxy* dengan dielektrik konstan (ε_r) 4.3, ketebalan (h) 1.6 mm, dan Tan δ 0.0265.
- Sensor dirancang berbasis resonator dengan *port* tunggal untuk beroperasi pada frekuensi 1 – 3 GHz.
- 3. Struktur resonator dioptimasi dengan model *Electrical Field Coupled (ELC)* yang dikombinasikan dengan *Interdigital Capacitor (IDC)*.
- 4. Parameter yang diamati meliputi *Frequency Detection Resolution (FDR)*, akurasi, dan sensitivitas yang dinormalisasi.
- 5. Material yang dideteksi adalah jenis material padat dengan rentang permitivitas 1 10.

4. Tujuan Penelitian

- Merancang dan memodelkan sensor gelombang mikro berbasis resonator *port* tunggal yang dikombinasikan dengan *Electrical Field Coupled (ELC)* dan *Interdigital Capacitor* (IDC) yang memiliki frekuensi kerja 1 3 GHz dengan spesifikasi S₁₁ ≤ -10 dB, sensitivitas > 0.5%, akurasi > 90%, dan *Frequency Detection Resolution* (FDR)
 < 0.02 untuk mendeteksi permitivitas material padat dengan rentang permitivitas 1 10.
- Merealisasikan sensor gelombang mikro dengan resonator *port* tunggal berbasis *Electrical Field Coupled (ELC)* dan *Interdigital Capacitor* (IDC) untuk mendeteksi permitivitas material padat dengan rentang permitivitas 1 – 10.
- Memvalidasi dan mengukur sensor gelombang mikro dengan resonator *port* tunggal berbasis *Electrical Field Coupled (ELC)* dan *Interdigital Capacitor* (IDC) untuk mendeteksi permitivitas material padat dengan rentang permitivitas 1 – 10.

5. Manfaat Penelitian

- 1. Merancang sensor gelombang mikro untuk mendeteksi material padat untuk keperluan deteksi.
- 2. Menghasilkan teknologi tepat guna dalam bentuk sensor gelombang mikro yang memiliki performansi tinggi dengan struktur *single port* yang kompak.

6. Kajian Pustaka

6.1 Sensor Gelombang Mikro

Sensor Gelombang Mikro adalah alat elektronik yang memanfaatkan gelombang elektromagnetik pada frekuensi mikro untuk mendeteksi objek atau pergerakan di sekitarnya. Cara kerjanya melibatkan pemancaran gelombang mikro dan analisis pantulannya dari objek dalam area deteksi [12]. Sensor ini memiliki sensitivitas tinggi dan dapat mendeteksi gerakan meskipun ada penghalang seperti dinding tipis, kaca, atau bahan non-logam lainnya, tergantung pada frekuensi dan kekuatan gelombang yang digunakan [13].

Salah satu keunggulan utama dari sensor gelombang mikro adalah jangkauan deteksinya yang luas serta kemampuannya beroperasi dengan baik dalam berbagai kondisi lingkungan, termasuk dalam kegelapan total atau area dengan visibilitas rendah [14]. Sensor ini juga lebih andal dibandingkan sensor inframerah pasif (PIR) dalam mendeteksi gerakan karena tidak terpengaruh oleh perubahan suhu lingkungan. Selain itu, sensor gelombang mikro dapat mendeteksi objek yang bergerak dengan kecepatan tinggi, menjadikannya pilihan ideal untuk aplikasi keamanan dan otomasi [15].

Penggunaan sensor gelombang mikro sangat beragam. Dalam penelitian ini, pengembangan sensor gelombang mikro dilakukan dengan menggunakan model resonator *Electric Field Coupled* (ELC) yang dikombinasikan dengan *Interdigital Capacitor* (IDC). Kombinasi ini bertujuan untuk meningkatkan sensitivitas dan selektivitas sensor terhadap perubahan parameter lingkungan, seperti keberadaan objek atau variasi material di sekitarnya [16]. Model ini memanfaatkan resonansi frekuensi tinggi yang dihasilkan oleh ELC, sedangkan IDC berfungsi untuk meningkatkan kapasitansi dan respons elektromagnetik secara keseluruhan [17]. Pendekatan ini memungkinkan pembuatan sensor yang lebih presisi, efisien, dan cocok untuk aplikasi spesifik di berbagai industri. **Gambar 1** merupakan contoh desain sensor gelombang mikro.

Gambar 1. Contoh Desain Sensor Gelombang Mikro [18]

6.2 Teori Perturbasi

Teori Perturbasi adalah metode yang digunakan untuk memahami perubahan energi akibat gangguan kecil, seperti medan listrik atau magnet. Dalam konteks sensor gelombang mikro, teori ini dapat diterapkan untuk menentukan permitivitas *Material Under Test* (MUT). Ketika MUT diletakkan di atas resonator, medan listrik dan magnet resonator akan terganggu. Interaksi antara MUT dengan medan E dan H ini menyebabkan perubahan pada medan listrik dan magnet resonator. Perubahan frekuensi resonansi berhubungan langsung dengan sifat-sifat MUT, yang dijelaskan dalam persamaan berikut [2].

$$\frac{\Delta f_r}{f_r} = \frac{\int_{v} (\Delta \varepsilon \, E_1 \cdot E_0 + \Delta \mu \, H_1 \cdot H_0) \, dv}{\int_{v} (\varepsilon_0 \, |E_0|^2 + \mu_0 \cdot |H_0|^2) \, dv} \dots (1)$$

Keterangan :

- Δf_r
 f_r : Perubahan relatif frekuensi resonansi $\Delta \varepsilon$: Perubahan permitivitas (F/m) $\Delta \mu$: Perubahan permeabilitas (H/m) E_1 . E_0 : Medan listrik (V/m) H_1 . H_0 : Medan magnetik (A/m) ε_0 : Permitivitas vakum (F/m) μ_0 : Permeabilitas vakum (H/m)
- dv : Elemen volume (m^3)

Dalam persamaan tersebut, f_r menunjukkan frekuensi resonansi, sedangkan Δfr adalah pergeseran frekuensi resonansi sebelum dan sesudah penempatan MUT. Variabel $\Delta \varepsilon$ dan $\Delta \mu$ masing-masing mewakili perubahan permitivitas dan permeabilitas, sedangkan volume gangguan dilambangkan dengan v. Distribusi medan listrik dan magnet tanpa gangguan serta dengan gangguan ditunjukkan oleh E₀, H₀, dan E₁, H₁[19].

Berdasarkan persamaan (1), terlihat bahwa perubahan pada permitivitas atau permeabilitas MUT sejalan dengan perubahan frekuensi resonansi. Ketika MUT ditempatkan di area hotspot penginderaan, gangguan terhadap medan E-field terjadi. Interaksi MUT dengan resonator dapat dianggap sebagai beban kapasitif yang mengakibatkan pergeseran frekuensi resonansi. Rasio antara pergeseran frekuensi dan perubahan permitivitas MUT dinyatakan sebagai sensitivitas. Sensitivitas sensor (S) dapat dihitung menggunakan persamaan berikut [20].

<mark>s –</mark>	Δf	(funloaded - floaded)	
5 –	$\Delta \varepsilon_r$	$\mathcal{E}_{r(MUT)} - \mathcal{E}_{r(Reference)}$	(2)

Keterangan :

- S : Sensitivitas sensor (GHz)
- Δf : Perubahan frekuensi resonansi (GHz)
- *f*_{unloaded} : Frekuensi resonansi tanpa MUT (GHz)
- *f*_{loaded} : Frekuensi resonansi dengan MUT (GHz)
- $\Delta \varepsilon_r$: Perubahan permitivitas relatif

Dalam penelitian ini, perhatian utama terletak pada interaksi antara medan listrik dan sampel yang digunakan. Sampel tersebut bersifat dielektrik, sehingga pengaruh medan listrik menjadi fokus utama dalam analisis. Dengan mempertimbangkan sifat dielektrik dari sampel, medan magnet dianggap bernilai nol. Asumsi ini diambil untuk mempermudah analisis dan lebih menyoroti dampak medan listrik terhadap karakteristik sampel.

6.3 Parameter Sensor Gelombang Mikro

Sensitivitas sensor gelombang mikro ditentukan oleh perubahan frekuensi resonansi saat material uji (*Material Under Test*/MUT) diletakkan di titik *hotspot* sensor.

Perubahan frekuensi, yang dilambangkan sebagai $\triangle f$, mencerminkan selisih antara frekuensi resonansi resonator dalam kondisi tanpa beban ($f_{unloaded}$) dan kondisi dengan beban (f_{loaded}) [8]. Normalized Sensitivity (NS) dinyatakan dalam persentase dan merupakan parameter penting untuk menilai kemampuan sensor dalam mendeteksi perubahan sifat material. Selain itu, Frequency Detection Resolution (FDR) digunakan untuk mengukur ketelitian sensor dalam membedakan pergeseran frekuensi. Rumus yang digunakan untuk menghitung perubahan absolut frekuensi resonansi akibat keberadaan MUT adalah [2]:

$$\Delta f = (f_{unloaded} - f_{loaded}) \dots (3)$$

Keterangan :

 Δf : Perubahan absolut frekuensi resonansi (GHz) $f_{unloaded}$: Frekuensi resonansi tanpa MUT (GHz) f_{loaded} : Frekuensi resonansi dengan MUT (GHz)

Normalized Sensitivity (NS) dihitung berdasarkan pergeseran frekuensi relatif terhadap frekuensi dasar $(f_{unloaded})$ [21].

$$NS = \frac{1}{\Delta \varepsilon_r} x \left(\frac{f_{unloaded} - f_{loaded}}{f_{unloaded}} \right) \% \dots (4)$$

Keterangan :

NS : Normalized Sensitivity (%)

 $\Delta \varepsilon_r$: Perubahan permitivitas relatif

funloaded : Frekuensi resonansi tanpa MUT (GHz)

*f*_{loaded} : Frekuensi resonansi dengan MUT (GHz)

FDR menunjukkan perubahan frekuensi terkecil yang dapat dideteksi oleh sensor, yang sangat penting untuk aplikasi presisi tinggi [10].

Keterangan :

FDR : Rentang deteksi perubahan frekuensi terkecil (GHz)

$\Delta \varepsilon_r$: Perubahan permitivitas relatif

Kombinasi antara sensitivitas dan FDR merupakan faktor utama dalam mengevaluasi kinerja sensor gelombang mikro. Parameter ini sangat relevan dalam aplikasi seperti karakterisasi material, di mana diperlukan deteksi perubahan kecil pada sifat dielektrik atau permitivitas. Dengan mengoptimalkan desain sensor, misalnya melalui peningkatan mekanisme kopling atau penyempurnaan struktur resonator, sensitivitas yang lebih tinggi dan FDR yang lebih rendah dapat dicapai, sehingga memastikan analisis material yang lebih andal dan akurat.

6.4 *Electric Field Coupled* (ELC)

Electric Field Coupled (ELC) adalah teknologi yang memanfaatkan interaksi antara medan listrik untuk mendeteksi perubahan pada parameter fisik atau lingkungan. Prinsip dasar ELC melibatkan penggunaan resonator yang dirancang untuk beresonansi pada frekuensi tertentu ketika terpapar medan listrik. Resonator ini dapat mendeteksi perubahan kecil dalam karakteristik medan listrik, yang bisa disebabkan oleh kehadiran objek, variasi material, atau perubahan parameter lingkungan lainnya [22]. Mekanisme ini menjadikan ELC sangat sensitif dan ideal untuk berbagai aplikasi yang memerlukan deteksi presisi tinggi.

Salah satu keunggulan utama dari teknologi ELC dalam sensor gelombang mikro adalah kemampuannya menghasilkan resonansi yang stabil dan tajam pada frekuensi tinggi. ELC memiliki peran penting karena medan listrik pada frekuensi gelombang mikro sangat peka terhadap perubahan lingkungan [23]. ELC dapat mendeteksi perubahan kecil dalam medan elektromagnetik yang dihasilkan oleh gelombang mikro ketika digunakan sebagai resonator dalam sensor.

Selain itu, ELC juga memungkinkan pengembangan sensor yang lebih kecil dan efisien. Dengan sifatnya yang kompak, resonator ELC dapat dengan mudah diintegrasikan ke dalam desain perangkat elektronik modern yang semakin mengarah pada miniaturisasi .Gelombang mikro memiliki panjang gelombang pendek yang memungkinkan interaksi lebih detail dengan objek atau bahan di sekitarnya [24]. Dengan memanfaatkan resonator ELC, respons gelombang mikro dapat ditingkatkan secara signifikan, menghasilkan deteksi yang lebih presisi. Teknologi ini juga memungkinkan deteksi parameter lingkungan dalam kondisi sulit, seperti suhu ekstrem atau medan dengan banyak gangguan.

Secara keseluruhan, penggunaan ELC dalam sensor gelombang mikro memberikan keunggulan dalam akurasi, sensitivitas, dan fleksibilitas desain [25]. Kemampuannya untuk beroperasi pada frekuensi tinggi dan mendeteksi perubahan kecil dalam medan listrik menjadikannya solusi ideal untuk berbagai aplikasi modern. Kombinasi ELC dengan teknologi pendukung lainnya, seperti *Interdigital Capacitor* (IDC), semakin memperluas potensi penggunaan sensor gelombang mikro di berbagai bidang industri dan riset. **Gambar 2** merupakan contoh ELC yang digunakan sebagai resonator pada sensor.

Gambar 2. Contoh ELC sebagai Resonator pada Sensor [26]

6.5 Interdigital Capacitor (IDC)

Interdigital Capacitor (IDC) adalah komponen pasif yang dirancang untuk menyimpan energi dalam bentuk medan listrik melalui pengaturan jari-jari konduktor yang saling berselang-seling, mirip dengan struktur sisir. Prinsip kerja IDC didasarkan pada medan listrik yang terbentuk di antara jari-jari konduktor ketika tegangan diterapkan. IDC seringkali digunakan dalam aplikasi elektronik, termasuk filter, osilator, dan sensor [27].

Keunggulan utama IDC dalam sensor gelombang mikro adalah kemampuannya untuk menyediakan kapasitansi yang tinggi dalam ukuran yang kecil, serta respons yang konsisten pada frekuensi gelombang mikro. IDC mampu mendeteksi perubahan kapasitansi yang sangat kecil akibat variasi material atau kehadiran objek di sekitarnya [28]. Sifat ini menjadikannya sangat cocok untuk digunakan dalam sensor, di mana perubahan medan listrik akibat interaksi dengan lingkungan menjadi indikator utama. Sensitivitas IDC juga dapat ditingkatkan dengan menyesuaikan desain fisiknya. Kemampuannya untuk bekerja pada frekuensi gelombang mikro memungkinkan IDC untuk mendeteksi perubahan kecil pada gelombang elektromagnetik, menjadikannya elemen penting dalam desain sensor berbasis gelombang mikro [29].

Jika ELC dan IDC digabungkan dalam resonator untuk sensor, hasilnya adalah sistem yang lebih sensitif dan efisien. ELC, dengan kemampuan resonansinya, dapat mendeteksi perubahan frekuensi akibat variasi lingkungan, sementara IDC meningkatkan sensitivitas resonator melalui pengaturan kapasitansi. Kombinasi ini menciptakan resonator yang lebih responsif terhadap perubahan medan listrik dan gelombang elektromagnetik [30]. Integrasi ELC dan IDC juga memberikan fleksibilitas dalam desain sensor . Struktur IDC dapat dioptimalkan untuk menyesuaikan kapasitansi resonator ELC, sehingga memungkinkan tuning frekuensi resonansi yang lebih akurat. Dengan demikian, kombinasi ini tidak hanya meningkatkan sensitivitas, tetapi juga memastikan bahwa sensor dapat diadaptasi untuk berbagai aplikasi spesifik. Penggabungan ELC dan IDC dalam resonator menciptakan solusi yang unggul untuk berbagai kebutuhan sensor modern [31]. Bentuk IDC dapat dilihat pada **Gambar 3**.

Gambar 3. Interdigital Capacitor (IDC) [32]

6.6 Resonator Port Tunggal

Resonator *port* tunggal adalah jenis resonator yang memanfaatkan satu *port* untuk proses eksitasi dan pengukuran. Salah satu keunggulan utama dari konfigurasi ini adalah kesederhanaan strukturnya, yang membuatnya lebih mudah dalam hal desain, fabrikasi, dan pengoperasian dibandingkan dengan resonator *port* ganda [6]. Dengan hanya menggunakan satu *port*, resonator ini dapat mengurangi kebutuhan perangkat keras tambahan, sehingga menekan biaya produksi dan meningkatkan efisiensi waktu dalam proses pengukuran. Selain itu, resonator *port* tunggal cenderung lebih stabil

karena tidak memerlukan sinkronisasi antara dua *port*, yang mengurangi risiko gangguan atau interferensi selama pengukuran [33].

Dari segi performa, resonator *port* tunggal sangat ideal untuk aplikasi yang memerlukan sensitivitas tinggi, terutama jika didukung oleh struktur khusus seperti kombinasi elemen *Electric Field Coupled (ELC)* dan *Interdigital Capacitor (IDC)* [34]. Kombinasi ini dapat meningkatkan konsentrasi medan listrik di area *sensing*, sehingga memberikan respons yang lebih akurat terhadap perubahan permitivitas material yang diukur. Meskipun desainnya lebih sederhana, untuk pengukuran refleksi (S₁₁), resonator *port* tunggal menawarkan solusi yang efektif dengan struktur yang lebih ringkas dan efisien [9]. Desain awal dari sensor dengan resonator *port* tunggal ditunjukkan pada **Gambar 4.**

Gambar 4. Desain Awal Sensor dengan Port Tunggal

Dalam pembuatan desain awal sensor, terlebih dahulu diketahui karakteristik dari komponen bahan penyusunnya. Pada penelitian ini karakteristik yang digunakan yaitu nilai konstanta dielektrik, ketebalan substrat, dan loss tangen sebesar 4.3, 1.66 mm, dan 0.0265.

Kemudian merancang dimensi elemen peradiasi (*patch*) berbentuk persegi panjang. Lebar dan panjang *patch* dapat ditentukan dengan menggunakan persamaan berikut [35] :

• Lebar *Patch* (*Width*)

$$W = \frac{c}{2f\sqrt{\frac{\varepsilon_r + 1}{2}}}....(6)$$

• Konstanta Dielektrik Efektif (ε_{reff})

$$\varepsilon_{reff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} (1 + 12 \frac{h}{W})^{-1/2}$$
....(7)

• Panjang Tambahan *Patch* (ΔL)

$$\Delta L = 0.412 \text{ x h x } \frac{(\varepsilon_{reff} + 0.3)(\frac{w}{h} + 0.264)}{(\varepsilon_{reff} - 0.258)(\frac{w}{h} + 0.8)}.....(8)$$

• Panjang Patch Efektif (L_{eff})

$$L_{eff} = \frac{c}{2f\sqrt{\varepsilon_{reff}}}.....(9)$$

• Panjang Patch (Length)

$$\mathbf{L} = L_{eff} - 2\Delta \mathbf{L}.....(10)$$

Keterangan :

W : Lebar *patch* (mm)

c : Kecepatan cahaya di vakum (3×10⁸ m/s)

f : Frekuensi resonansi (Hz)

 ε_r : Konstanta permitivitas relatif material substrat

 ε_{reff} : Konstanta dielektrik efektif

h : Ketebalan substrat (mm)

ΔL : Panjang tambahan *patch* (mm)

L_{reff} : Panjang *patch* efektif (mm)

L : Panjang *patch* (mm)

Setelah mendapatkan dimensi sensor, langkah selanjutnya adalah melakukan simulasi desain awal dengan memperhatikan parameter *Return Loss* (S_{11}), yang digunakan untuk mengukur energi gelombang yang dipantulkan kembali ke *port input* dari suatu perangkat atau sistem ketika gelombang mikro diterapkan [35]. Nilai ini dihitung sebagai rasio antara daya yang dipantulkan dan daya yang diumpankan ke

perangkat, dan biasanya dinyatakan dalam satuan desibel (dB). Rumus *Return Loss* adalah sebagai berikut [36]:

Return loss $(dB) = 20 \log \Gamma$(11)

Pada sensor gelombang mikro, S_{11} digunakan untuk mengevaluasi interaksi sensor dengan bahan atau lingkungan yang diukur. Nilai S_{11} akan berubah sesuai dengan sifat dielektrik atau konduktivitas material di dekat sensor, memungkinkan pengukuran parameter seperti kelembaban, konsentrasi cairan, atau sifat kimia material [37]. Sensor gelombang mikro sering dirancang untuk beroperasi pada frekuensi resonansi tertentu. Ketika material tertentu mendekat, perubahan resonansi dapat terdeteksi melalui pergeseran nilai minimum pada kurva S_{11} .

Nilai $S_{11} \leq -10$ dB dianggap cukup baik dalam sistem komunikasi atau sensor, menunjukkan bahwa lebih dari 90% daya diteruskan ke perangkat [38]. Dalam konteks sensor, nilai S_{11} yang sangat rendah pada frekuensi tertentu menunjukkan sensitivitas tinggi terhadap perubahan material di sekitar sensor.

6.7 Studi Literatur

Dalam penelitian ini, terdapat referensi sebanyak 5 penelitian yang dilakukan dengan model resonator sensor dan jumlah *port* yang berbeda. Penelitian [39] menggunakan model *T-Shaped Resonator Embedded with IDC*, yang dirancang untuk mengukur material padat dengan rentang permitivitas 1 – 6,15 pada frekuensi 1,64/2,43 GHz. Model ini menggunakan konfigurasi *single port*, yang relatif sederhana dibandingkan *dual port*. Namun, penelitian ini masih memiliki beberapa kelemahan. Salah satu kelemahan utamanya adalah belum menggunakan struktur ELC. Akibatnya, konsentrasi medan listrik di area sensing belum dapat terlihat dengan jelas. Ketidakjelasan medan listrik ini dapat berdampak pada sensitivitas pengukuran, terutama pada material dengan rentang permitivitas yang lebih luas. Struktur yang digunakan juga kurang mampu meningkatkan fokus medan listrik pada area sensing.

Model Multiple Complementary Split-Ring Resonator (MCSRR) digunakan dalam penelitian [40] untuk pengukuran material padat dengan rentang permitivitas 1– 10 pada frekuensi 4,9 GHz. Model ini memanfaatkan konfigurasi *dual port* untuk mendukung pengukuran, tetapi penggunaan *dual port* memiliki kelemahan signifikan. Konfigurasi ini membuat strukturnya menjadi jauh lebih kompleks, sehingga memerlukan *port* ganda dalam proses pengukuran. Kompleksitas struktur tidak hanya meningkatkan biaya pembuatan perangkat, tetapi juga menambah tingkat kesulitan operasional. Selain itu, seperti penelitian sebelumnya, model ini belum mengintegrasikan struktur ELC, sehingga distribusi medan listrik di area *sensing* belum terfokus dengan optimal.

Penelitian [41] menggunakan model *Dual T-Shaped Resonator*, yang dirancang untuk mengukur material padat dengan rentang permitivitas 1–6,15 pada frekuensi 1,81/2,34 GHz. Model ini menggunakan konfigurasi *single port*, yang membuat strukturnya lebih sederhana dibandingkan dengan konfigurasi *dual port*. Namun, meskipun lebih sederhana, penelitian ini masih memiliki kelemahan karena belum memanfaatkan struktur ELC dan IDC. Ketiadaan struktur ELC menyebabkan distribusi medan listrik di area *sensing* kurang terfokus, yang dapat berdampak pada performa dan sensitivitas pengukuran, terutama pada aplikasi yang membutuhkan tingkat akurasi tinggi.

Penelitian [42] menggunakan model *Double Square Split Ring Resonator* dengan tujuan mengukur material padat pada rentang permitivitas 1–5 dengan frekuensi 5,12 GHz. Model ini memanfaatkan konfigurasi *dual port*, yang dirancang untuk mendukung pengukuran material dengan rentang permitivitas tertentu. Namun, seperti penelitian lainnya yang menggunakan *dual port*, penelitian ini memiliki kelemahan berupa struktur yang jauh lebih kompleks. Kompleksitas ini tidak hanya membuat proses fabrikasi menjadi lebih sulit, tetapi juga membutuhkan *port* ganda selama pengukuran. Selain itu, model ini juga belum menggunakan struktur ELC dan IDC, sehingga konsentrasi medan listrik di area *sensing* belum dapat dioptimalkan.

Penelitian [43] menggunakan model *Split Ring Resonator*, yang dirancang untuk mengukur material padat dengan rentang permitivitas 1–7 pada frekuensi 3,37 GHz. Seperti penelitian sebelumnya, model ini menggunakan konfigurasi *dual port*, yang menambah kompleksitas struktur. Penggunaan *dual port* memerlukan dua saluran pengukuran, yang meningkatkan kesulitan operasional dan dapat menambah biaya pengukuran. Selain itu, penelitian ini juga belum memanfaatkan struktur ELC dan IDC. Akibatnya, medan listrik di area *sensing* tidak terfokus dengan baik, sehingga sensitivitas dan akurasi pengukuran masih belum maksimal.

Penelitian yang diusulkan bertujuan untuk mengatasi berbagai kelemahan dari penelitian sebelumnya dengan memperkenalkan struktur ELC yang dikombinasikan dengan IDC. Kombinasi ini dirancang untuk mengkonsentrasikan medan listrik di area *sensing*, sehingga dapat meningkatkan sensitivitas dan akurasi pengukuran secara signifikan. Dengan struktur ini, distribusi medan listrik menjadi lebih fokus, yang berdampak pada performa resonator dalam mendeteksi perubahan permitivitas material. Selain itu, penelitian ini menggunakan *single port*, yang memiliki keunggulan berupa struktur yang jauh lebih sederhana dan mudah dioperasikan dibandingkan dengan *dual port*. Penggunaan *single port* juga mengurangi kompleksitas dalam fabrikasi dan pengukuran, sehingga dapat meningkatkan efisiensi secara keseluruhan. Penelitian ini diharapkan menjadi solusi yang lebih praktis dan efektif untuk pengukuran material padat dengan berbagai rentang permitivitas. Hasil studi literatur dapat dilihat pada **Tabel 1.**

Penelitian	Tahun	Model	SUT	Permittivity	Freq	Konfigurasi	Parameter
renentian	Tanun	Woder	501	Range	(GHz)	Port	yang Diamati
[30]	2024	T-Shaped Resonator	Solid	1-6.15	1.64/2.43	<i>a.</i> 1 D	G
[37]	2024	Embedded with IDC	Material			Single Port	S_{11}
		Multiple					
[40]	2024	Complementary	Solid	1 10	4.0	Dural Deat	S
[40]	2024	Split-Ring Resonator	Material	1 - 10	4.9	Duuiron	3 ₂₁
		(MCSRR)					
[41]	2023	Dual T-Shaped	Solid	1-615	1 81/2 34	Single Port	S
[+1]	2025	Resonator	Material	1 0.15	1.01/2.34	Single I on	511
[42]	2023	Double Square Split	Solid	1 - 5	5 12	Dual Port	S
[72]	2025	Ring Resonator	Material	1 5	5.12	Duur I ori	521
[43]	2020	Split Ring Resonator	Solid	1 – 7	3.37	Dual Port	Sec
[]	2020	spin rang tesonator	Material	- /	2.57	2	521

Tabel 1. Meta Analisis

7. Metode Penelitian

7.1 Diagram Alir Penelitian

Gambar 5. Diagram Alir Penelitian

Tahapan penelitian adalah sebagai berikut :

a. Pengumpulan Bahan Literatur

Langkah pertama ini bertujuan untuk mengumpulkan informasi dan referensi dari berbagai sumber ilmiah, seperti jurnal dan buku, yang relevan dengan topik penelitian, terutama mengenai sensor gelombang mikro.

b. Menentukan Spesifikasi dan Material Sensor Gelombang Mikro

Pada tahap ini, dilakukan penentuan parameter spesifikasi sensor dan karakteristik refleksi ($S_{11} \leq -10 \text{ dB}$), serta pemilihan material yang akan digunakan dalam desain sensor.

c. Melakukan Perancangan Awal Sensor dan Simulasi

Sensor dirancang dan diuji secara virtual menggunakan perangkat lunak HFSS. Tujuan dari simulasi ini adalah untuk memastikan bahwa desain awal memenuhi spesifikasi yang telah ditentukan.

d. Kesesuaian Spesifikasi Sensor

Hasil dari simulasi diperiksa untuk memastikan bahwa parameter S₁₁ dan frekuensi kerja sudah sesuai dengan target spesifikasi $(1 - 3 GHz dan \le 10 dB)$. Jika hasilnya memenuhi kriteria, tahap berikutnya dapat dilanjutkan. Namun, jika tidak, desain awal dan simulasi akan diulang untuk melakukan perbaikan.

- e. Melakukan Perancangan Sensor ELC dengan IDC Setelah desain awal dinyatakan sesuai, tahap selanjutnya adalah melakukan perancangan lebih mendetail dengan menggabungkan elemen *Electric Field Coupled* (ELC) dan *Interdigitated Capacitor* (IDC) melalui proses iterasi dan simulasi hingga mencapai hasil yang optimal.
- f. Kesesuaian Spesifikasi Sensor dengan Resonator Parameter diperiksa untuk memastikan bahwa spesifikasi sensor sesuai dengan target (S₁₁ \leq 10 *dB*, NS \geq 0.5 %, akurasi > 90%, dan FDR < 0.02). Jika tidak, desain perlu diperbaiki dan diuji ulang hingga memenuhi spesifikasi.
- g. Analisis Performa Sensor

Analisis performa sensor berdasarkan desain yang sudah ada untuk menentukan iterasi yang paling optimal.

- h. Iterasi Ketebalan dan Tan δ pada SUT
 Melakukan variasi ketebalan material sensor dari 1 mm 1.6 mm dan nilai faktor
 rugi dielektrik (tan δ) dengan nilai 0 0.1 pada Sample Under Test (SUT) melalui
 iterasi simulasi.
- Analisis Hasil Iterasi Ketebalan dan Tan δ SUT
 Mengevaluasi hasil iterasi untuk melihat pengaruh variasi parameter terhadap performa sensor.
- j. Fabrikasi Sensor

Setelah menentukan desain sensor yang optimal, sensor akan difabrikasi untuk diuji dalam kondisi nyata menggunakan material yang telah ditentukan.

k. Pengukuran dan Verifikasi

Sensor yang sudah difabrikasi diuji untuk memverifikasi performanya. Hasil pengukuran dibandingkan dengan hasil simulasi untuk memvalidasi kesesuaian desain.

1. Analisis Hasil Pengukuran

Data dari hasil pengukuran dianalisis untuk mengevaluasi apakah sensor berhasil memenuhi spesifikasi dan tujuan penelitian.

m. Kesimpulan Hasil Penelitian

Berdasarkan hasil analisis, ditarik kesimpulan terkait performa sensor yang dikembangkan, serta rekomendasi untuk penelitian selanjutnya.

7.2 Diagram Alir Perancangan

Gambar 6. Diagram Alir Perancangan

Tahapan perancangan sensor adalah sebagai berikut :

a. Menentukan Spesifikasi Sensor

Pada langkah awal ini, spesifikasi sensor yang akan dirancang didefinisikan. Spesifikasi mencakup parameter seperti : Rentang frekuensi kerja (Fr): 1–3 GHz, *Return Loss* (S11) harus ≤ -10 dB untuk memastikan kinerja yang baik.

b. Menghitung Dimensi Awal Sensor

	Dimensi awal sensor dihitung berdasarkan spesifikasi yang telah ditentukan.
	Perhitungan dilakukan menggunakan persamaan (6) sampai dengan (10).
с.	Merancang Sensor di Aplikasi HFSS
	Sensor dirancang menggunakan software High-Frequency Structure Simulator
	(HFSS). Pada tahap ini, dimensi awal dari sensor diimplementasikan ke dalam
	model 3D dalam software.
d.	Menentukan Frekuensi Kerja dan Sweep
	Frekuensi kerja sensor ditentukan sesuai dengan spesifikasi (1–3 GHz), dan proses
	simulasi dilakukan dengan teknik <i>frequency sweep</i> . Ini bertujuan untuk memeriksa
	respons sensor terhadap berbagai frekuensi dalam rentang tersebut.
е.	Menambahkan Analisis Return Loss
	Analisis Return Loss (S11) dilakukan untuk mengevaluasi seberapa baik energi
	gelombang mikro diserap oleh sensor. Nilai S_{11} yang lebih kecil dari -10 dB
	menunjukkan sensor memiliki kineria yang baik

f. Cek Kembali Dimensi dan Setup Analisis

Setelah tahap analisis awal, dilakukan validasi terhadap dimensi desain sensor, pengaturan simulasi (*setup analysis*), dan validasi model untuk memastikan desain memenuhi syarat spesifikasi. Jika validasi tidak sesuai, kembali ke langkah sebelumnya untuk revisi.

g. Run Simulasi

Simulasi dijalankan pada *software* untuk mendapatkan hasil berupa grafik, data, dan parameter yang menggambarkan kinerja sensor.

h. Kesesuaian Spesifikasi Sensor

Pada langkah ini, hasil simulasi dibandingkan dengan spesifikasi awal. Jika frekuensi resonansi (Fr) berada di antara 1–3 GHz dan S11 \leq -10 dB, serta medan listrik dan medan magnet memenuhi kriteria maksimum, maka proses dilanjutkan. Jika tidak, dilakukan perbaikan desain sensor dengan langkah iterasi.

i. Iterasi Perancangan Sensor

Jika spesifikasi tidak tercapai, maka sensor dirancang ulang berdasarkan hasil simulasi sebelumnya. Proses ini berulang hingga spesifikasi terpenuhi.

j. Analisis Hasil Simulasi

Jika sensor memenuhi spesifikasi, hasil simulasi dianalisis secara menyeluruh.

7.3 Spesifikasi Desain Sensor Gelombang Mikro

Pada penelitian ini, sensor gelombang mikro dirancang dengan menggunakan perangkat lunak HFSS untuk mendapatkan desain sensor dengan nilai *Frequency Detection Resolution* (FDR), akurasi rata-rata, dan *Normalized Sensitivity* (NS) yang optimal. Permitivitas dari *Sample Under Test* (SUT) adalah 1 – 10. Proses iterasi dilakukan untuk menentukan frekuensi resonansi (f_r), medan listrik (*E-Field*), dan medan magnet (*H-field*) maksimum yang berfungsi sebagai area *sensing*.

Parameter	Target
Frekuensi Kerja	1 – 3 GHz
S ₁₁	≤ -10 dB
Sensitivitas yang dinormalisasi	> 0.5 %
Akurasi	> 90%
Frequency Detection Resolution	< 0.02

Tabel 2. Spesifikasi Desain Sensor

Tabel 2 menunjukkan spesifikasi target untuk desain sensor berbasis gelombang mikro yang beroperasi dalam rentang frekuensi 1 hingga 3 GHz. Parameter utama yang ditetapkan mencakup S_{11} (*return loss*) dengan target tidak lebih besar dari -10 dB. Selain itu, spesifikasi mencantumkan sensitivitas yang dinormalisasi tidak lebih kecil dari 0.5%, yang berarti perubahan kecil pada parameter pengukuran akan menghasilkan respons yang terdeteksi dengan baik oleh sensor. Spesifikasi lainnya termasuk akurasi lebih dari 90%, menunjukkan bahwa sensor diharapkan memberikan hasil pengukuran yang sangat andal dan mendekati nilai sebenarnya. Resolusi deteksi frekuensi ditargetkan kurang dari 0.02, yang mengindikasikan kemampuan sensor untuk membedakan perubahan frekuensi dengan tingkat presisi tinggi. Secara keseluruhan, spesifikasi ini mencerminkan desain sensor dengan kinerja optimal untuk aplikasi di bidang komunikasi, karakterisasi material, atau penginderaan berbasis gelombang mikro.
7.4 Spesifikasi *Sample Under Test*

Sample Under Test (SUT) atau material uji yang digunakan dalam penelitian ini adalah material dengan permitivitas yang telah ditentukan berdasarkan *data sheet* dari HFSS. Material yang digunakan dipilih karena sifatnya yang mendukung analisis yang dilakukan. Material tersebut adalah bahan dielektrik yang tidak mengandung unsur tembaga, sehingga memungkinkan interaksi yang optimal dengan medan listrik dari sensor. Spesifikasi lengkap mengenai sampel yang digunakan dapat dilihat pada **Tabel 3**.

Nama Material	Ketebalan	Tan ð	Relative Permittivity
Vacuum (udara)	1.58 mm	0	1
Rogers RT/duroid 5880 (tm)	<mark>1.58 mm</mark>	<mark>0.0009</mark>	2.2
Rogers RO4003 (tm)	1.58 mm	0.0027	3.55
FR4_epoxy	1.58 mm	0.0265	4.3
Rogers RO3006 (tm)	1.58 mm	0.0025	<mark>6.15</mark>
Rogers TMM 10 (tm)	<mark>1.58 mm</mark>	0.0022	9.2
Rogers TMM 10i (tm)	1.58 mm	0.002	<mark>9.8</mark>

Tabel 3. Spesifikasi Sample Under Test

Material yang akan diuji pada penelitian meliputi berbagai jenis bahan dielektrik, seperti udara, Rogers RT/duroid 5880, Rogers RO4003, FR4_epoxy, Rogers RO3006, Rogers TMM 10, dan Rogers TMM 10i. Semua material memiliki ketebalan yang sama, yaitu 1.58 mm, namun berbeda dalam nilai loss tan δ dan *relative permittivity*. Nilai tan δ mencerminkan tingkat kerugian energi dalam material, dengan udara memiliki nilai nol (tanpa kerugian energi), sementara material lain memiliki nilai kecil yang menunjukkan kerugian yang minimal. Nilai permitivitas dari material bervariasi, yang gunanya untuk menunjukkan kemampuan material dalam menyimpan energi listrik. Variasi sifat-sifat ini penting untuk menganalisis interaksi medan listrik dengan material dalam penelitian.

7.5 Penelitian Pendahuluan

7.5.1 Perancangan Sensor Gelombang Mikro

Perancangan sensor dimulai dengan merancang resonator port tunggal berbasis rectangular yang ditunjukkan pada **Gambar 4**, di mana dimensi lebar (W) dan panjang (L) ditentukan sebagai berikut :

Lebar Patch (Width) berdasarkan persamaan (6)

W =
$$\frac{c}{2f\sqrt{\frac{\epsilon_r+1}{2}}} = \frac{3 \times 10^8}{2 \times 2.4 \times 10^9 \sqrt{\frac{4.3+1}{2}}} = 0.0338 = 38 \text{ mm}$$

Konstanta Dielektrik Efektif (ε_{reff}) berdasarkan persamaan (7)

$$\varepsilon_{reff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(1 + 12 \frac{h}{W}\right)^{-1/2} = \frac{4.3 + 1}{2} + \frac{4.3 - 1}{2} \left(1 + 12 \frac{1.6}{38}\right)^{-1/2} = 3.99$$

Panjang Tambahan Patch (ΔL) berdasarkan persamaan (8)

$$\Delta L = 0.412 \text{ x h x} \frac{(\varepsilon_{reff} + 0.3)(\frac{W}{h} + 0.264)}{(\varepsilon_{reff} - 0.258)(\frac{W}{h} + 0.8)} = 0.412 \text{ x } 1.6 \text{ x} \frac{(3.99 + 0.3)(\frac{38}{1.6} + 0.264)}{(3.99 - 0.258)(\frac{38}{1.6} + 0.8)} =$$

0.7411 mm

Panjang Patch Efektif (L_{eff}) berdasarkan persamaan (9)

$$L_{eff} = \frac{c}{2f\sqrt{\varepsilon_{reff}}} = \frac{3 \times 10^8}{2 \times 2.4 \times 10^9 \sqrt{3.99}} = 0.0312 = 31.2 \text{ mm}$$

Panjang Patch (Length) berdasarkan persamaan (10)

 $L = L_{eff} - 2\Delta L = 31.2 - 2 (0.7411) = 29 \text{ mm}$

Berdasarkan persamaan-persamaan tersebut, didapatkan hasil dimensi lebar (W) dan panjang (L) awal sensor adalah 38 mm dan 29 mm.

Gambar 7. Dimensi Desain Sensor

Gambar 7 menunjukkan dimensi dari sensor gelombang mikro berbasis resonator yang dirancang untuk meningkatkan sensitivitas terhadap perubahan sifat dielektrik material yang diuji. Detail dimensi sensor dapat dilihat pada Tabel 4.

Parameter	Dimensi (mm)
Wg	50
Lg	50
W	38
L	29
W _r	10
L _r	10
W ₁	2.5
W ₂	1.3
W ₃	3
W _p	4
Lp	17

Tabel 4. Keterangan Dimensi Desain Sensor

 W_g dan L_g merupakan lebar dan panjang *ground plane*, masing-masing sebesar 50 mm. *Ground plane* berfungsi sebagai referensi untuk transmisi gelombang. W dan L menunjukkan lebar dan panjang resonator utama, yaitu 38 mm dan 29 mm, yang berperan dalam menentukan frekuensi resonansi sensor. W_r dan L_r

adalah lebar dan panjang elemen resonator tambahan, masing-masing sebesar 10 mm, yang digunakan untuk meningkatkan sensitivitas sensor. W_1 , W_2 , dan W_3 adalah lebar jalur dengan nilai berturut-turut 2.5 mm, 1.3 mm, dan 3 mm. W_p dan L_p adalah lebar dan panjang *feedline* atau jalur penghubung utama sebesar 4 mm dan 17 mm, yang berfungsi untuk mentransmisikan sinyal dari sumber gelombang mikro ke resonator.

Gambar 8. Desain Struktur ELC Combined with IDC Sensor

Gambar 8 merupakan representasi tiga dimensi dari struktur desain sensor gelombang mikro yang mengombinasikan Electric Field Coupled (ELC) dan Interdigital Capacitor (IDC), dengan penjelasan mengenai dimensi dan struktur utama. Sensor ini dirancang untuk mengkarakterisasi material padat dengan area sensing tertentu. Material Under Test (MUT) berupa sampel padat dengan ukuran 10 x 10 mm yang diletakkan di atas area sensing. Area sensing merupakan bagian krusial dari sensor, di mana terjadi interaksi antara medan elektromagnetik sensor dan material.

Desain sensor terdiri dari beberapa lapisan, termasuk lapisan material padat, substrat, dan *groundplane*. Sensor ini dilengkapi dengan elemen resonator ELC yang dipadukan dengan IDC, terletak di area pusat atau area *sensing*. Elemen ini berfungsi untuk menghasilkan medan resonansi yang peka terhadap perubahan sifat material pada MUT. *Feed line* digunakan untuk mengalirkan sinyal elektromagnetik ke sensor, sementara konektor menghubungkan sensor ke perangkat pengukuran atau rangkaian eksternal. *Groundplane* berperan sebagai referensi untuk medan elektromagnetik, memastikan stabilitas performa sensor.

7.5.2 Pengembangan Model Sensor Gelombang Mikro

Pengembangan sensor dilakukan secara bertahap melalui lima model. Tahapan model sensor dapat dilihat pada **Gambar 9.**

Gambar 9. (a) Model 1, (b) Model 2, (c) Model 3, (d) Model 4, (e) Model 5

Pada Model 1, desain awal dibuat dalam bentuk *patch* persegi panjang sederhana dengan strip transmisi sebagai acuan dasar, bertujuan untuk menentukan parameter dasar resonansi tanpa elemen tambahan.

Gambar 10. Hasil Simulasi E-Field Model Awal

Gambar 10 menunjukkan hasil simulasi medan listrik (*E-field*) pada desain awal sensor berbasis gelombang mikro dengan model patch persegi panjang sederhana. Pada model ini, strip transmisi digunakan sebagai referensi dasar untuk mempelajari distribusi medan listrik tanpa adanya elemen tambahan. Warna pada gambar merepresentasikan intensitas medan listrik, dengan skala dari 0,02 hingga 300 V/m, di mana area dengan intensitas tinggi (merah) berada di sekitar bagian tengah patch, sedangkan intensitas rendah (biru) terlihat di area sekitarnya. Desain ini bertujuan untuk menentukan karakteristik resonansi dasar sebelum dilakukan modifikasi lebih lanjut. Selanjutnya, pada Model 2, desain dimodifikasi dengan menambahkan slot pada *patch* utama untuk memperbaiki distribusi medan listrik dan meningkatkan sensitivitas sensor terhadap perubahan parameter lingkungan.

Tahap pengembangan berlanjut ke Model 3, di mana elemen *Interdigitated Capacitor* (IDC) ditambahkan di tengah slot dengan dimensi 10×10 mm, bertujuan untuk meningkatkan kapasitansi sehingga respons sensor terhadap perubahan lingkungan menjadi lebih kuat.

Pada Model 4, ukuran elemen IDC diperbesar menjadi 15×15 mm untuk mengevaluasi pengaruh dimensi yang lebih besar terhadap sensitivitas dan medan listrik, melalui simulasi iteratif guna mencapai keseimbangan antara kapasitansi dan efisiensi resonansi.

Akhirnya, pada Model 5, elemen IDC diperbesar lagi menjadi 16×20 mm untuk memaksimalkan kapasitansi dan sensitivitas sensor, dengan simulasi dilakukan untuk memastikan distribusi medan listrik dan resonansi tetap sesuai spesifikasi yang diharapkan.

7.5.3 Perbandingan Hasil Simulasi Model Sensor

Setelah melakukan beberapa desain *development model* untuk sensor, dilakukan simulasi dan perbandingan nilai *Return Loss* dari setiap model untuk mendapatkan model yang paling optimal.

Gambar 11. Grafik Hasil S₁₁ untuk Model 1, Model 2, dan Model 3

Gambar 11 menunjukkan simulasi parameter S_{11} dari tiga model pengembangan sensor yang berbeda. Parameter S_{11} mencerminkan seberapa besar energi yang dipantulkan oleh sensor pada frekuensi tertentu.

Model 1 memiliki frekuensi resonansi di 2,39 GHz dengan nilai S_{11} sebesar -6,2 dB, yang menunjukkan bahwa sebagian besar energi yang masuk masih dipantulkan oleh sensor, mengindikasikan efisiensi yang kurang optimal. Desain Model 1 sederhana dengan elemen radiasi berbentuk kotak, tetapi kinerjanya lebih rendah dibandingkan model lainnya.

Model 2 memiliki frekuensi resonansi lebih rendah, yaitu 1,21 GHz, dengan nilai S_{11} hanya mencapai -2,3 dB, menunjukkan bahwa sensor ini memantulkan energi lebih banyak dibandingkan Model 1 dan tidak efisien. Desain Model 2 menggunakan elemen tambahan dalam struktur radiasinya, tetapi performanya masih belum optimal untuk aplikasi praktis.

Model 3 menunjukkan kinerja terbaik dengan frekuensi resonansi pada 1,96 GHz dan nilai S_{11} sebesar -19,1 dB, menandakan energi pantulan yang sangat minim dan menjadikannya sangat efisien. Desain Model 3 menggabungkan struktur elemen yang lebih kompleks dan mampu menghasilkan respons frekuensi yang lebih baik, sehingga menjadi pilihan paling ideal untuk pengembangan lebih lanjut. Hasil grafik perbandingan simulasi untuk model 3, model 4, dan model 5 juga disajikan dalam **Gambar 12**.

Gambar 12. Grafik Hasil S₁₁ untuk Model 3, Model 4, dan Model 5

Model 3 memiliki frekuensi resonansi tunggal pada 1,96 GHz dengan nilai S_{11} sebesar -19,1 dB, yang menunjukkan bahwa model ini memiliki pantulan energi yang rendah pada frekuensi tersebut, sehingga cukup efisien. Dengan hanya satu pita frekuensi, desain Model 3 sederhana dan dapat diandalkan, menjadikannya pilihan yang tepat untuk aplikasi yang memerlukan stabilitas pada satu frekuensi kerja.

Di sisi lain, Model 4 memiliki dua pita frekuensi resonansi, yaitu pada 2,35 GHz dan 2,84 GHz, dengan nilai S_{11} masing-masing sebesar -7,51 dB dan -6,3 dB. Meskipun Model 4 mendukung pita frekuensi ganda, nilai S_{11} -nya kurang optimal dibandingkan Model 3, yang menunjukkan pantulan energi yang lebih besar. Hal ini membuat Model 4 lebih sesuai untuk aplikasi yang memerlukan sensor *multiband* meskipun efisiensinya tidak maksimal.

Model 5 memiliki frekuensi resonansi pada 1,88 GHz dan 2,33 GHz, dengan nilai S_{11} masing-masing -24,52 dB dan -14,9 dB. Nilai S_{11} pada frekuensi 1,88 GHz sangat baik dan menunjukkan pantulan energi yang sangat rendah. Namun, Model 5 memiliki terlalu banyak pita frekuensi, yang dapat menambah kompleksitas dan kurang ideal untuk aplikasi tertentu. Oleh karena itu, meskipun performa S_{11} Model 5 unggul, Model 3 tetap dipilih untuk iterasi lebih lanjut karena stabilitas performanya pada satu pita frekuensi.

7.5.4 Perbandingan Hasil Simulasi Iterasi Sensor

Model 3 telah dipilih untuk dilanjutkan ke tahap iterasi lebih lanjut karena kinerjanya yang unggul dalam efisiensi dan respons frekuensi. Terdapat tiga iterasi yang dirancang untuk meningkatkan desain sensor yang dapat dilihat pada **Gambar** 13.

Gambar 13. (a) Iterasi 1, (b) Iterasi 2, (c) Iterasi 3

Pada Iterasi 1, *slot* pada *patch* utama diperbesar dari 3 mm menjadi 4 mm. Perubahan ini bertujuan untuk memperbaiki distribusi medan listrik di sekitar resonator, sehingga diharapkan dapat meningkatkan sensitivitas sensor. Dengan memperbesar slot, diharapkan sensor dapat lebih baik dalam mendeteksi perubahan parameter lingkungan yang halus.

Iterasi 2 melibatkan perubahan posisi *slot. Slot* yang sebelumnya terletak di atas dan bawah resonator dipindahkan ke samping kiri dan kanan resonator. Penyesuaian posisi ini dirancang untuk mengoptimalkan interaksi antara medan listrik dan elemen radiasi, yang dapat meningkatkan efisiensi pemantulan energi serta memperbaiki karakteristik frekuensi resonansi. Dengan mengubah posisi *slot*, distribusi medan listrik diharapkan menjadi lebih merata, sehingga respons sensor dapat ditingkatkan.

Pada Iterasi 3, resonator dirotasi untuk mengeksplorasi orientasi yang berbeda dalam desain. Tujuan dari rotasi ini adalah untuk menemukan sudut optimal yang dapat memaksimalkan efisiensi pemantulan energi dan meningkatkan kinerja keseluruhan sensor. Dengan mengubah orientasi resonator, diharapkan respons frekuensi yang lebih baik dapat dicapai, serta peningkatan sensitivitas terhadap sinyal yang diterima.

Melalui ketiga iterasi ini, setiap perubahan dilakukan dengan tujuan mengoptimalkan desain Model 3, sehingga diharapkan dapat menghasilkan sensor dengan performa yang lebih tinggi dan respons yang lebih baik terhadap sinyal pada frekuensi yang ditargetkan. Grafik hasil simulasi untuk iterasi 1, iterasi 2, dan iterasi 3 ditunjukkan pada **Gambar 14**.

Gambar 14. Grafik Hasil S₁₁ untuk Iterasi 1, Iterasi 2, dan Iterasi 3

Pada Iterasi 1, sensor menunjukkan satu frekuensi resonansi pada 1,98 GHz dengan nilai S_{11} sebesar -11,65 dB, yang mencerminkan performa resonansi yang cukup baik. Desain resonator pada tahap ini dengan satu elemen resonansi utama, sehingga cocok untuk aplikasi pada frekuensi sedang.

Iterasi 2 menunjukkan peningkatan dengan frekuensi resonansi yang lebih rendah, yaitu 1,62 GHz, dan nilai S_{11} sebesar -16,58 dB. Ini mencerminkan resonansi yang lebih tajam dan efisien, membuat desain ini lebih sesuai untuk material dengan permitivitas tinggi atau aplikasi pada frekuensi yang lebih rendah.

Pada Iterasi 3, desain sensor menghasilkan dua frekuensi resonansi, yaitu 1,91 GHz dan 2,3 GHz, dengan nilai S_{11} masing-masing -7,65 dB dan -7,92 dB. Secara keseluruhan, Iterasi 2 unggul dalam efisiensi resonansi, sedangkan Iterasi 1 berada di tengah dengan performa sensor yang baik.

Selain nilai S_{11} , medan listrik (*E-Field*) dan medan magnet (*H-Field*) untuk Model 3, Iterasi 1, 2, dan 3 juga disimulasikan pada aplikasi HFSS.

Gambar 15. (a) E-Field (b) H-Field untuk Model 3

Gambar 15 (a) menunjukkan distribusi medan listrik (*E-field*) pada Model 3, yang memiliki skala maksimum 55 V/m. Distribusi *E-field* ini tidak merata, dengan intensitas yang lemah di sebagian besar area sensor. Area dengan intensitas tertinggi terbatas pada bagian resonator pusat, meskipun masih dalam skala rendah. Hal ini mengindikasikan bahwa model ini memiliki performa medan listrik yang kurang optimal untuk mendukung resonansi yang ideal.

Gambar 15 (b) menggambarkan medan magnet (*H-field*) pada Model 3, yang menunjukkan intensitas sangat rendah dengan skala maksimum hanya 2 A/m. Distribusi medan magnet ini juga tidak signifikan di sekitar resonator, menandakan bahwa interaksi antara medan magnet dan material yang diuji kurang efektif. Ini menunjukkan kelemahan Model 3 dalam menghasilkan medan elektromagnetik yang memadai untuk aplikasi sensor.

Gambar 16. (a) E-Field (b) H-Field untuk Iterasi 1

Gambar 16 (a) memperlihatkan distribusi *E-field* pada Iterasi 1, yang menunjukkan peningkatan signifikan dibandingkan Model 3. Skala maksimum *E-field* mencapai 15 kV/m, menandakan intensitas medan listrik yang sangat kuat di sekitar area resonator utama. Distribusinya lebih merata, dengan konsentrasi tinggi di area pusat resonator, menunjukkan bahwa Iterasi 1 mampu menghasilkan *E-field* yang sangat baik untuk mendukung resonansi dan performa sensor secara keseluruhan.

Gambar 16 (b) menunjukkan *H-field* pada Iterasi 1, yang juga menunjukkan performa jauh lebih baik dengan skala maksimum 100 A/m. Intensitas medan magnet terdistribusi dengan baik di sekitar resonator, menunjukkan interaksi kuat dengan material yang diuji. Peningkatan ini menjadikan Iterasi 1 unggul dalam menghasilkan medan elektromagnetik yang optimal dibandingkan iterasi lainnya.

Gambar 17. (a) E-Field (b) H-Field untuk Iterasi 2

Gambar 17 (a) menggambarkan distribusi *E-field* pada Iterasi 2, yang memiliki skala maksimum jauh lebih rendah dibandingkan Iterasi 1, yaitu hanya mencapai 25 V/m. Medan listrik yang dihasilkan relatif lemah dan kurang merata, terutama di sekitar area resonator. Ini menunjukkan bahwa Iterasi 2 tidak mampu menghasilkan *E-field* yang cukup kuat untuk mendukung resonansi yang efisien, sehingga performanya lebih rendah dibandingkan Iterasi 1.

Gambar 17 (b) menunjukkan distribusi *H-field* pada Iterasi 2, yang juga memperlihatkan performa kurang baik dengan skala maksimum hanya mencapai 10 A/m. Intensitas medan magnet yang dihasilkan tidak signifikan di sekitar resonator, membatasi interaksi antara medan magnet dan material yang diuji. Ini menyoroti kelemahan Iterasi 2 dalam menghasilkan medan elektromagnetik yang efektif.

Gambar 18. (a) E-Field (b) H-Field untuk Iterasi 3

Gambar 18 (a) menggambarkan distribusi *E-field* pada Iterasi 3, yang menunjukkan peningkatan dibandingkan Iterasi 2 dengan skala maksimum mencapai 70 V/m. Namun, medan listrik yang dihasilkan masih lebih lemah dibandingkan Iterasi 1. Area dengan intensitas tinggi terbatas pada bagian tertentu dari resonator, menunjukkan bahwa Iterasi 3 masih kurang optimal dalam mendistribusikan *E-field* secara merata.

Gambar 18 (b) memperlihatkan *H-field* pada Iterasi 3, yang memiliki intensitas sangat rendah dengan skala maksimum hanya 2 A/m. Distribusi *H-field* juga tidak signifikan, dengan intensitas hampir tidak terdeteksi di sebagian besar area resonator. Hal ini menunjukkan bahwa Iterasi 3 memiliki performa medan magnet yang sangat lemah, jauh di bawah Iterasi 1.

Secara keseluruhan, Iterasi 1 menunjukkan performa terbaik dalam menghasilkan *E-field* dan *H-field*, dengan skala maksimum masing-masing sebesar 15 kV/m dan 100 A/m. Distribusinya juga merata di sekitar resonator, menjadikannya paling efektif untuk aplikasi sensor. Model 3 dan Iterasi 2 menunjukkan performa jauh lebih rendah dalam hal intensitas dan distribusi medan elektromagnetik. Meskipun Iterasi 3 sedikit lebih baik daripada Iterasi 2 dalam hal *E-field*, ia sangat lemah dalam *H-field* dan masih kalah dibandingkan dengan Iterasi 1.

7.5.5 Hasil Simulasi untuk Relative Permittivity 1 – 10

Simulasi dilakukan untuk menganalisis performa desain sensor terhadap variasi nilai permitivitas relatif (ε_r) dalam rentang 1 hingga 10 untuk 4 desain, yaitu Model 3, Iterasi 1, Iterasi 2, dan Iterasi 3. Tujuan dari simulasi ini adalah untuk mengevaluasi respons koefisien refleksi (S_{11}) pada setiap desain, yang mencerminkan efisiensi sensor dalam mendeteksi perubahan konstanta dielektrik di berbagai frekuensi. Grafik hasil simulasi *relative permittivity* untuk Model 3 diperlihatkan pada **Gambar 19**.

Gambar 19. Grafik Hasil Simulasi Relative Permittivity untuk Model 3

Pada Model 3, kurva S_{11} menunjukkan resonansi terjadi pada frekuensi antara 1,8 GHz hingga 2,2 GHz, dengan nilai minimum S_{11} mencapai -23.52 dB pada frekuensi 1.92 GHz. Meskipun resonansi pada model ini cukup tajam, efisiensinya tidak sebanding dengan desain iteratif lainnya. Kurva ini juga menunjukkan sensitivitas yang kurang signifikan terhadap variasi ε_r , terutama pada nilai ε_r yang lebih tinggi ($\varepsilon_r = 7$ hingga 10). Hal ini mengindikasikan bahwa model ini masih memerlukan optimasi lebih lanjut untuk menghasilkan respons yang lebih konsisten dan efisien. **Gambar 20** menunjukkan grafik *relative permittivity* untuk Iterasi 1.

Gambar 20. Grafik Hasil Simulasi Relative Permittivity untuk Iterasi 1

Iterasi 1 menunjukkan performa terbaik dibandingkan dengan desain lainnya. Resonansi terjadi pada rentang frekuensi 1,9 GHz, dengan nilai S_{11} yang sangat rendah mencapai -42.13 dB pada frekuensi 1.94 GHz, menandakan refleksi minimal dan penyerapan energi maksimal. Kurva ini menunjukkan sensitivitas tajam terhadap perubahan ε_r , di mana posisi puncak resonansi bergeser secara konsisten seiring dengan peningkatan ε_r . Respons ini menandakan bahwa desain Iterasi 1 sangat ideal untuk aplikasi sensor karena mampu mendeteksi perubahan dielektrik dengan akurasi tinggi sambil mempertahankan efisiensi resonansi yang stabil. Grafik simulasi *relative permittivity* Iterasi 2 dapat dilihat pada **Gambar 21**.

Gambar 21. Grafik Hasil Simulasi Relative Permittivity untuk Iterasi 2

Pada Iterasi 2, resonansi terjadi dalam rentang frekuensi yang lebih rendah, yaitu antara 1,45 GHz hingga 1,75 GHz, dengan nilai minimum S_{11} hanya mencapai -18.65 dB pada frekuensi 1.6 GHz. Resonansi yang dihasilkan kurang tajam dan kurva S_{11} lebih datar dibandingkan Iterasi 1. Sensitivitas terhadap perubahan ε_r juga lebih rendah, di mana perubahan nilai ε_r hanya memberikan pergeseran kecil pada kurva resonansi. Ini menunjukkan bahwa desain Iterasi 2 kurang optimal dalam mendeteksi perubahan konstanta dielektrik dan kurang efisien dalam meminimalkan refleksi. Iterasi terakhir, atau Iterasi 3 memiliki grafik *relative permittivity* yang ditunjukkan pada **Gambar 22.**

Gambar 22. Grafik Hasil Simulasi Relative Permittivity untuk Iterasi 3

Iterasi 3 menunjukkan resonansi yang lebih baik dibandingkan Iterasi 2 tetapi masih kalah optimal dibandingkan Iterasi 1. Rentang frekuensi resonansi terjadi antara 1,8 GHz hingga 2,6 GHz dengan nilai minimum S_{11} sebesar -24.75 dB pada frekuensi 1.9 GHz. Kurva resonansi terlihat lebih lebar, menandakan bahwa desain ini lebih toleran terhadap variasi frekuensi tetapi memiliki efisiensi yang lebih rendah dibandingkan Iterasi 1. Sensitivitas terhadap perubahan ε_r cukup baik. Namun, lebar kurva menyebabkan kurangnya ketajaman dalam mendeteksi pergeseran resonansi.

Secara keseluruhan, Iterasi 1 muncul sebagai desain terbaik karena menghasilkan kurva S_{11} paling tajam dan mendalam serta stabil di frekuensi target. Desain ini menunjukkan sensitivitas tinggi terhadap variasi ε_r , menjadikannya paling cocok untuk aplikasi sensor berbasis perubahan konstanta dielektrik.

Berdasarkan hasil simulasi, diperoleh grafik korelasi antara Frekuensi Resonansi (f_r) dan *Relative Permittivity* (ε_r) untuk Model 3, Iterasi 1, Iterasi 2, dan Iterasi 3. Grafik dilengkapi dengan persamaan kurva regresi polinomial serta nilai koefisien determinasi (R²), yang menunjukkan seberapa baik data sesuai dengan model regresi sensor. Grafik korelasi antara f_r dan ε_r untuk Model 3 dapat dilihat pada **Gambar 23.**

Gambar 23. Grafik Korelasi Antara f_r dan ε_r untuk Model 3

Pada grafik ini, hubungan antara f_r dan ε_r didapatkan nilai R² sebesar 0.9133 menunjukkan bahwa model regresi cukup baik dalam merepresentasikan hubungan data. Kurva menunjukkan bahwa penurunan frekuensi resonansi seiring dengan peningkatan nilai ε_r tidak bersifat linier, tetapi cenderung mengalami perubahan pola pada nilai ε_r yang lebih tinggi. Meskipun model ini memiliki nilai R² yang tinggi, responsnya kurang stabil dibandingkan dengan Iterasi 1, yang ditunjukkan oleh **Gambar 24.**

Iterasi 1 menunjukkan hubungan paling konsisten dan stabil antara f_r dan ε_r , dengan nilai R² yang sangat tinggi, yaitu 0.9995, mengindikasikan bahwa hampir seluruh variasi data dapat dijelaskan oleh model regresi tersebut. Penurunan f_r terhadap ε_r sangat halus dan mengikuti pola kuadratik yang stabil. Grafik ini menunjukkan bahwa Iterasi 1 memiliki sensitivitas tinggi terhadap perubahan ε_r , menjadikannya desain yang sangat andal untuk mendeteksi variasi konstanta dielektrik dengan akurasi tinggi. Hubungan antara f_r dan ε_r untuk Iterasi 2 ditunjukkan pada **Gambar 25.**

Gambar 25. Grafik Korelasi Antara f_r dan ε_r untuk Iterasi 2

Iterasi 2 menunjukkan hubungan yang jauh lebih lemah antara f_r dan ε_r . Nilai R² hanya sebesar 0.4675, yang berarti model regresi hanya mampu menjelaskan sebagian kecil variasi data. Penurunan f_r terhadap ε_r terlihat tidak teratur, dengan banyak penyimpangan dari model. Hal ini menunjukkan bahwa Iterasi 2 memiliki sensitivitas yang rendah dan kurang stabil dalam mendeteksi perubahan ε_r . Pada **Gambar 26** dapat dilihat grafik Iterasi 3.

Gambar 26. Grafik Korelasi Antara f_r dan ε_r untuk Iterasi 3

Nilai R² pada Iterasi 3 sebesar 0.4376 menunjukkan bahwa model linier hanya menjelaskan sebagian kecil variasi data. Penurunan f_r terhadap ε_r terlihat tidak stabil

dan kurang konsisten. Terdapat banyak deviasi, yang menunjukkan bahwa Iterasi 3 kurang sensitif dan akurat dalam mendeteksi perubahan ε_r .

Berdasarkan perbandingan antara frekuensi resonansi (f_r) dan konstanta dielektrik relatif (ε_r) untuk Model 3, Iterasi 1, Iterasi 2, dan Iterasi 3, Iterasi 1 adalah desain terbaik karena memiliki nilai R² tertinggi (0.9995), yang menunjukkan hubungan paling baik antara f_r dan ε_r . Kurva pada Iterasi 1 menunjukkan pola yang halus dan stabil, mengindikasikan sensitivitas tinggi terhadap perubahan ε_r dengan akurasi yang sangat baik. Sebaliknya, Model 3, Iterasi 2, dan Iterasi 3 memiliki nilai R² yang lebih rendah, dengan pola hubungan yang kurang teratur dan banyak penyimpangan. Oleh karena itu, Iterasi 1 adalah desain terbaik untuk aplikasi sensor.

Berdasarkan hasil simulasi, nilai *Normalized Sensitivity* (NS), *Frequency Detection Resolution* (FDR), dan *Average Accuracy* dapat dihitung dengan persamaan (3), (4), dan (5). Hasil perbandingan pengujian kinerja sensor dapat dilihat di **Tabel 5**.

Development	FDR	Average Accuracy	Normalized Sensitivity
Model 3	0.017	73.17%	0.684%
Iterasi 1	0.015	97.76%	0.585%
Iterasi 2	0.005	57.95%	0.137%
Iterasi 3	0.001	7.65%	0.058%

Tabel 5. Perbandingan Hasil Pengujian Kinerja Sensor

Model 3 mencatat FDR sebesar 0.017, *Average Accuracy* 73.17%, dan NS 0.684%. Meskipun NS tertinggi di antara semua model, akurasinya tidak optimal dibandingkan Iterasi 1, sehingga kinerjanya kurang seimbang.

Iterasi 1 menunjukkan kinerja terbaik dengan FDR 0.015, *Average Accuracy* 97.76%, dan NS 0.585%. Tingginya akurasi ini menunjukkan kemampuan sensor untuk mendeteksi data dengan sangat baik. Meskipun NS Iterasi 1 sedikit lebih rendah daripada Model 3, performa keseluruhannya tetap yang terbaik karena keseimbangan antara akurasi dan sensitivitas.

Iterasi 2 memiliki FDR lebih rendah yaitu 0.005 dibandingkan Model 3 dan Iterasi 1, tetapi *Average Accuracy*-nya turun drastis menjadi 57.95%, dengan NS hanya mencapai 0.137%. Ini menunjukkan bahwa meskipun tingkat kesalahan deteksi berkurang, sensor tidak mampu mempertahankan akurasi dan sensitivitas yang cukup tinggi, sehingga performanya menurun secara keseluruhan.

Iterasi 3 memiliki FDR terendah di angka 0.001, tetapi *Average Accuracy* hanya mencapai 7.65% dan NS sebesar 0.058%. Meskipun sensor hampir tidak membuat kesalahan deteksi, kemampuannya dalam mendeteksi data dengan benar sangat buruk, menjadikannya sebagai iterasi dengan performa terendah di antara semua model.

Berdasarkan perbandingan, Iterasi 1 dianggap yang paling baik karena menawarkan keseimbangan ideal antara FDR yang rendah, akurasi tinggi, dan NS yang memadai. Nilai *Average Accuracy* yang sangat tinggi (97.76%) menunjukkan kemampuan sensor dalam mendeteksi data dengan benar, sementara nilai FDR yang relatif rendah (0.015) menandakan tingkat kesalahan deteksi yang minim.

7.5.6 Hasil Simulasi untuk Iterasi Ketebalan SUT

Batas ketebalan Sample Under Test (SUT) dapat ditentukan dengan melakukan iterasi terhadap ukuran ketebalan SUT dengan nilai permitivitas relatif (ε_r) sebesar 1. Proses ini bertujuan untuk mengevaluasi bagaimana variasi ketebalan mempengaruhi performa sensor dalam mendeteksi sinyal serta untuk mengidentifikasi ketebalan optimal yang memberikan hasil terbaik dalam pengukuran. Ukuran setiap tahapan iterasi ketebalan SUT dapat dilihat pada **Tabel 6.**

Parameter	Dimensi (mm)							
	SUT	Iterasi 1	Iterasi 2	Iterasi 2	Iterasi 3	Iterasi 4	Iterasi 5	
Z	1	1.1	1.2	1.3	1.4	1.5	1.6	

Tabel 6. Dimensi Iterasi Ketebalan SUT

Iterasi ketebalan SUT (z) dilakukan sebanyak 5 kali, dimulai dari kondisi awal sebesar 1 mm hingga 1.6 mm pada iterasi 5. Melalui simulasi menggunakan perangkat lunak HFSS, diperoleh hasil mengenai pengaruh perbedaan ketebalan SUT terhadap frekuensi resonansi.

Gambar 27. Grafik Hasil Simulasi Iterasi Ketebalan SUT

Gambar 27 menunjukkan hasil simulasi parameter S_{11} (koefisien refleksi) dengan variasi ketebalan sampel (z) dari 1 mm hingga 1.6 mm untuk menganalisis pengaruh ketebalan terhadap resonansi frekuensi dan kinerja sensor.

Untuk z = 1 mm hingga z = 1.4 mm, frekuensi resonansi bergeser sedikit dari 2 GHz (pada z = 1 mm) ke 1.98 GHz (pada z = 1.1 mm), dan kembali stabil ke 2 GHz mulai dari z = 1.2 mm.

Pada z = 1.5 mm, resonansi terjadi pada frekuensi 2 GHz, dengan nilai S11 sebesar -13.25 dB. Nilai ini menunjukkan bahwa meskipun frekuensi resonansi stabil, efisiensi refleksi sedikit menurun dibandingkan ketebalan sebelumnya (z = 1.4 mm).

Pada z = 1.6 mm, resonansi tetap terjadi pada 2 GHz, tetapi nilai S11 semakin membesar (-11.88 dB), menunjukkan kinerja sensor yang semakin menurun.

Mulai dari z = 1.5 mm, frekuensi resonansi tidak lagi mengalami pergeseran dan stabil pada 2 GHz. Hal ini menunjukkan bahwa pada ketebalan ini, sensor telah mencapai batas responsnya, sehingga ketebalan yang lebih besar tidak memberikan peningkatan performa signifikan. Simulasi ini menunjukkan bahwa ketebalan optimum untuk respons sensor adalah 1.6 mm, di mana frekuensi resonansi stabil pada 2 GHz dengan efisiensi pantulan yang relatif baik.

7.5.7 Hasil Simulasi untuk Iterasi SUT Dielektrik Tan δ

Gambar 28. Hasil Simulasi untuk Iterasi SUT Dielektrik Tan δ

Gambar 28 menunjukkan hasil simulasi parameter S_{11} pada berbagai nilai dielektrik tan δ pada SUT. Pada simulasi ini, nilai tan δ diverisasikan dari 0 hingga 0,10 untuk mempelajari pengaruhnya terhadap respons sensor. Hasil perbandingan dimuat pada Tabel 7.

Tan δ	S ₁₁ (dB)
0	-13.68
0.02	-14.06
0.04	-14.44
0.06	-14.84
0.08	-15.25
0.1	-15.67

Tabel 7. Nilai S₁₁ dari Hasil Simulasi Iterasi SUT Dielektrik Tan δ

Kurva minimum tetap berada di frekuensi 2 GHz, menandakan frekuensi resonansi yang tidak terpengaruh oleh perubahan nilai tan δ . Pada tan $\delta = 0$, nilai S_{11} adalah -13,36 dB, menunjukkan pantulan energi yang lebih besar. Pada tan $\delta = 0,1$, nilai S_{11} turun menjadi -15,67 dB, menunjukkan pantulan energi yang lebih kecil.

Simulasi ini menunjukkan bahwa kinerja sensor semakin meningkat dengan meningkatnya nilai tan δ , karena nilai S_{11} semakin kecil. Material dengan tan δ lebih tinggi lebih baik dalam mengurangi pantulan energi, sehingga ideal untuk aplikasi di mana diperlukan penyerapan energi maksimum atau minimasi pantulan.

Berdasarkan simulasi yang telah dilakukan, hasil keseluruhan menunjukkan bahwa sensor gelombang mikro *single port* dengan resonator berbasis ELC dan IDC yang dirancang pada penelitian ini berhasil mendeteksi permitivitas 1 - 10, maksimum ketebalan SUT 1 - 1.6 mm, dan Tan $\delta 0 - 0.1$. Spesifikasi rancangan sensor juga berhasil sesuai dengan target (**Tabel 2**). Rencana tahapan selanjutnya pada penelitian ini adalah melakukan optimasi dan fabrikasi dari sensor yang telah dirancang.

8. Rencana Pelaksanaan Kegiatan

Proses	Nov	Des	Jan	Feb	Mar	Apr	Mei	Jun
Pelaksanaan	2024	2024	2025	2025	2025	2025	2025	2025
Pengumpulan bahan literatur								
Studi literatur								
Menentukan spesifikasi dan material sensor								
Perancangan desain sensor								
Simulasi hasil desain sensor								
Fabrikasi sensor								
Pengujian dan evaluasi								
Pengambilan data								
Analisis hasil dan penulisan laporan								
Kesimpulan								

Tabel 8. Rencana Pelaksanaan Kegiatan

9. Daftar Referensi

- Jahangiri, M. Naser-Moghadasi, Behbod Ghalamkari, Massoud Dousti, "A New Planar Microwave Sensor for Fat-Measuring of Meat Based on SRR and Periodic EBG Structures," in *Sensors and Actuators A: Physical*, Volume 346, 2022, 113826, ISSN 0924-4247, <u>https://doi.org/10.1016/j.sna.2022.113826</u>
- R. A. Alahnomi *et al.*, "Review of Recent Gelombang mikro Planar Resonator-Based Sensors :," *Sens. Rev.*, vol. 2267, no. 21, pp. 1–38, 2021.
- [3] J. F. Vetelino and A. Reghu, "Introduction to sensors," *Introd. to Sensors*, no. December, pp. 1–180, 2017.
- [4] R. K. Abdulsattar *et al.*, "Optical-gelombang mikro sensor for real-time measurement of water contamination in oil derivatives," *AEU Int. J. Electron. Commun.*, vol. 170, p. 154798, 2023.
- [5] K. S. L. Parvathi and S. R. Gupta, "Ultrahigh-Sensitivity and Compact EBG-Based Microwave Sensor for Liquid Characterization," in *IEEE Sensors Letters*, vol. 6, no. 4, pp. 1-4, April 2022, Art no. 3500604, doi: 10.1109/LSENS.2022.3159800.
- [6] A. Raza, R. Keshavarz, E. Dutkiewicz, and N. Shariati, "Compact Multiservice Antenna for Sensing and Communication Using Reconfigurable Complementary Spiral Resonator," *IEEE Trans. Instrum. Meas.*, vol. 72, pp. 1–8, 2023.
- [7] A. Aquino, C. G. Juan, B. Potelon and C. Quendo, "Dielectric Permittivity Sensor Based on Planar Open-Loop Resonator," in *IEEE Sensors Letters*, vol. 5, no. 3, pp. 1-4, March 2021, Art no. 3500204, doi: 10.1109/LSENS.2021.3055544.
- [8] A. A. Al-Behadili, I. A. Mocanu, N. Codreanu, and M. Pantazica, "Modified split ring resonators sensor for accurate complex permittivity measurements of solid dielectrics," *Sensors (Switzerland)*, vol. 20, no. 23, pp. 1–18, 2020.
- [9] I. Royo, R. Fernández-García, and I. Gil, "Gelombang mikro Resonators for Wearable Sensors Design: A Systematic Review," *Sensors*, vol. 23, no. 22, 2023.
- [10] A. J. A. Al-Gburi, N. A. Rahman, Z. Zakaria, and M. Palandoken, "Detection of Semi-Solid Materials Utilizing Triple-Rings CSRR Gelombang mikro Sensor," *Sensors*, vol. 23, no. 6, 2023.

- [11] S. N. Khonina, N. L. Kazanskiy, and M. A. Butt, "Optical Fibre-Based Sensors—An Assessment of Current Innovations," *Biosensors*, vol. 13, no. 9, 2023.
- [12] A. S. Abd El-Hameed, D. M. Elsheakh, G. M. Elashry, and E. A. Abdallah, "Cutting-Edge Gelombang mikro Sensors for Vital Signs Detection and Precise Human Lung Water Level Measurement," *Magnetism*, vol. 4, no. 3, pp. 209–239, 2024.
- [13] K. Gopalakrishnan *et al.*, "Applications of Gelombang mikros in Medicine Leveraging Artificial Intelligence: Future Perspectives," *Electron.*, vol. 12, no. 5, 2023.
- [14] P. Chaudhari, Y. Xiao, M. M. C. Cheng, and T. Li, "Fundamentals, Algorithms, and Technologies of Occupancy Detection for Smart Buildings Using IoT Sensors," *Sensors*, vol. 24, no. 7, pp. 1–50, 2024.
- [15] N. T. P. Van, L. Tang, V. Demir, S. F. Hasan, N. D. Minh, and S. Mukhopadhyay, "Review-gelombang mikro radar sensing systems for search and rescue purposes," *Sensors (Switzerland)*, vol. 19, no. 13, pp. 1–24, 2019.
- [16] R. E. Rachmanita and H. Ahmadi, "Aplikasi Interdigital Capacitor Sensor (IDCS) dalam pengukuran permitivitas relatif Crude Oil," *J. Pendidik. Fis. dan Keilmuan*, vol. 5, no. 2, p. 72, 2019.
- [17] K. U. Niswatul, "Pengaruh Konfigurasi IDCS (Inter Digital Capasitor) Terhadap Pengukuran Permitivitas Crude Oil," pp. 1–87, 2017.
- [18] A. Javed, A. Arif, M. Zubair, M. Q. Mehmood and K. Riaz, "A Low-Cost Multiple Complementary Split-Ring Resonator-Based Microwave Sensor for Contactless Dielectric Characterization of Liquids," in *IEEE Sensors Journal*, vol. 20, no. 19, pp. 11326-11334, 1 Oct.1, 2020, doi: 10.1109/JSEN.2020.2998004.
- [19] P. Pushkar and V. R. Gupta, "A design rule for an ELC resonator," 2015 International Conference on Innovations in Information, Embedded and Communication Systems (ICHECS), Coimbatore, India, 2015, pp. 1-4, doi: 10.1109/ICHECS.2015.7193147.
- [20] A. Tirunagari, N. Makireddi, B. T. P. Madhav and V. R. Manikonda, "Design and Comparative Study on Planar ELC Resonators for cr Analysis," 2024 IEEE Wireless Antenna and Microwave Symposium (WAMS), Visakhapatnam, India, 2024, pp. 1-5, doi: 10.1109/WAMS59642.2024.10528083.

- [21] S. Agarwal and M. C. Garg, "Design of an Accurate, Planar, Resonant Gelombang mikro Sensor for Testing a Wide Range of Liquid Samples," *Electron.*, vol. 13, no. 22, 2024.
- [22] J. Naqui, M. Durán-Sindreu, and F. Martín, "Differential and single-ended microstrip lines loaded with slotted magnetic-lc resonators," *Int. J. Antennas Propag.*, vol. 2013, 2013.
- [23] P. K. Varshney, A. Kapoor and M. J. Akhtar, "Highly Sensitive ELC Resonator Based Differential Sensor," in *IEEE Transactions on Instrumentation and Measurement*, vol. 70, pp. 1-10, 2021, Art no. 8004710, doi: 10.1109/TIM.2021.3113135.
- [24] Wang, Hao & Cui, Peng & Carling, Paul. (2021). Wang et al 2021. Earth Science Frontiers. 28. 140-167. [25] C. Wang *et al.*, "High-Accuracy Complex Permittivity Characterization of Solid Materials Using Parallel Interdigital Capacitor-Based Planar Microwave Sensor," in *IEEE Sensors Journal*, vol. 21, no. 5, pp. 6083-6093, 1 March1, 2021, doi: 10.1109/JSEN.2020.3041014.
- [26] Nouri Novin, Shohreh & Jarchi, Saughar & Yaghmaee, Pouria. (2017). "Tunable frequency selective surface based on IDC-loaded electric-LC resonator incorporated with liquid crystal". 1-4. 10.1109/COMITE.2017.7932364.
- [27] J. Yeo and J. I. Lee, "High-sensitivity gelombang mikro sensor based on an interdigitalcapacitor-shaped defected ground structure for permittivity characterization," *Sensors* (*Switzerland*), vol. 19, no. 3, 2019.
- [28] X. Tang *et al.*, "An Interdigital Gelombang mikro Sensor Based on Differential Structure for Dielectric Constant Characteristics Measurement," *Sensors*, vol. 23, no. 14, 2023.
- [29] P. Mohammadi, A. Mohammadi, and A. Kara, "T-Junction Loaded with Interdigital Capacitor for Differential Measurement of Permittivity," *IEEE Trans. Instrum. Meas.*, vol. 71, 2022.
- [30] C. Liu, C. Liao, Y. Peng, W. Zhang, B. Wu, and P. Yang, "Microwave Sensors and Their Applications in Permittivity Measurement," *Sensors*, vol. 24, no. 23, 2024.
- [31] S. Harnsoongnoen and B. Buranrat, "Advances in a Gelombang mikro Sensor-Type Interdigital Capacitor with a Hexagonal Complementary Split-Ring Resonator for Glucose Level Measurement," *Chemosensors*, vol. 11, no. 4, 2023.
- [32] Q. He et al., "Lumped element granular aluminum resonators with high kinetic

inductances," AIP Adv., vol. 11, no. 6, pp. 1-6, 2021.

- [33] V. Özkaner, L. C. Paul, M. Karaaslan, and V. Akdoğan, "Gelombang mikro-Based Electrochemical Sensor Design by SRR Approach for ISM Sensing Applications," *Genet. Res. (Camb).*, vol. 2022, 2022.
- [34] J. Guo, Y. Tang, Y. Wu, C. Zhu, and J. Huang, "Embeddable Soil Moisture Content Sensor Based on Open-End Gelombang mikro Coaxial Cable Resonator," *IEEE Sens.* J., vol. 23, no. 12, pp. 13575–13584, 2023.
- [35] Y. Rahmawati, P. K. Goran, and V. Ulitama, "Modifikasi Antena Mikrostrip Berbasis Defected Ground Structure (DGS) Berbentuk Patch Puzzle untuk Aplikasi Sub-6 GHz 5G," J. Telecommun. Electron. Control Eng., vol. 5, no. 2, pp. 109–118, 2023.
- [36] A. Pandu, "Design of Ultra Wideband Power Divider Based on Substrate Interdigital Waveguide (Siw) for Radar Penetration Applications," pp. 21–26, 2016.
- [37] H. Hutapea and K. A. Santoso, "Analysis of S-Parameter Testing on Duplexer Device and Coaxial Cable with 1800 MHz," J. Tek. dan Ilmu Komput., vol. 07, no. Jan-Mar 2018, pp. 1–7, 2018.
- [38] A. Songara, P. Dhiman, and S. Bandotra, "Application of machine learning in IoHT," Smart Secur. Internet Healthc. Things, no. Ml, pp. 71–89, 2022.
- [39] "synchronous detection relative humidity machine learning training flow output flow angle of attack SOI wafer angle of attack relative humidity," vol. 8, no. 7, 2024.
- [40] D. Gao, H. Sun, and H. Huang, "Gelombang mikro Resonant Sensor Based on MCSRR Research," J. Comput. Electron. Inf. Manag., vol. 12, no. 3, pp. 63–69, 2024.
- [41] S. Alam, Z. Zakaria, I. Surjati, N. A. Shairi, M. Alaydrus, and T. Firmansyah, "Interdigital Gelombang mikro Sensor and Antenna Sensor Based on Dual T-Shaped Resonator Structures for Contact and Noncontact Characterization of Solid Material," *IEEE Sens. J.*, vol. 23, no. 12, pp. 13010–13018, 2023.
- [42] K. Masrakin, S. Z. Ibrahim, H. A. Rahim, S. N. Azemi, P. J. Soh, and S. Tantiviwat, "Microstrip Sensor Based on Ring Resonator Coupledd with Double Square Split Ring Resonator for Solid Material Permittivity Characterization," *Micromachines*, vol. 14, no. 4, 2023.

[43] N. A. Rahman *et al.*, "High quality factor using nested complementary split ring resonator for dielectric properties of solids sample," *Appl. Comput. Electromagn. Soc. J.*, vol. 35, no. 10, pp. 1222–1227, 2020.

JADWAL SEMINAR PROPOSAL TESIS PROGRAM STUDI MAGISTER TEKNIK ELEKTRO SEMESTER GASAL 2024/2025 (PERIODE II)

Pelaksanaan : Online di Ruang Zoom

No	Hari/Tanggal	Waktu	NIM & NAMA	JUDUL PROPOSAL TESIS	PEMBIMBING/PENGUJI	Ruangan
1.	Rabu, 08 Januari 2025	10.00 - 11.00	162012300001 / Muhammad Nugrah Kusumah	PERANCANGAN SENSOR GELOMBANG MIKRO BERBASIS <i>CIRCULAR SPLIT RING RESONATOR</i> DAN <i>ELECTRIC FIELD COUPLED</i> UNTUK KARAKTERISASI MATERIAL PADAT	 Pembimbing : > Syah Alam, S.Pd, MT, PhD / Prof. Dr. Ir. Indra Surjati, MT, IPU Penguji > Dr. Ir. Lydia Sari, ST, MT > Ir. Henry Candra, ST, MT, PhD 	https://trisakti-ac- id.zoom.us/j/97389131167?pwd=S3hGQld TMCt6bzhqSS9PTEJab3NDUT09
2.	Rabu, 08 Januari 2025	11.00 – 12.00	162012300008/ Fitri Kurnia Sari	PERANCANGAN SENSOR GELOMBANG MIKRO <i>PORT</i> TUNGGAL DENGAN KOMBINASI RESONATOR <i>ELECTRIC FIELD COUPLED</i> (ELC) DAN <i>INTERDIGITAL CAPACITOR</i> (IDC) UNTUK KARAKTERISASI MATERIAL PADAT	 Pembimbing: > Syah Alam, S.Pd, MT, PhD / Prof. Dr. Ir. Indra Surjati, MT, IPU Penguji > Dr. Ir. Lydia Sari, ST, MT > Ir. Henry Candra, ST, MT, PhD 	<u>https://trisakti-ac-</u> id.zoom.us/j/97389131167?pwd=S3hGQld TMCt6bzhqSS9PTEJab3NDUT09
3.	Rabu, 08 Januari 2025	13.00 - 14.00	162012300003/ Angga Septian	ANALISA SISTEM MANAJEMEN ENERGI (SME) DENGAN METODE TEKNO EKONOMI PADA GEDUNG PEMERINTAH DAERAH KHUSUS IBUKOTA (DKI) JAKARTA	 Pembimbing: > Dr. Ir. Chairul Gagarin Irianto, MS / Dr. Ir. Lydia Sari, ST, MT Penguji > Dr. Ir. Yuli Kurnia Ningsih, MT, IPU > Dr. Ir. R Deiny Mardian, ST, MT 	https://trisakti-ac- id.zoom.us/j/97389131167?pwd=S3hGQld TMCt6bzhqSS9PTEJab3NDUT09

4.	Rabu, 08 Januari 2025	14.00 - 15.00	162012300007 / Harly	MANAJEMEN ENERGI PADA PENERANGAN JALAN UMUM DENGAN MENGGUNAKAN METODA PENCAHAYAAN ADAPTIF	 Pembimbing: ▷ Dr. Ir. Chairul Gagarin Irianto, MS / Dr. Ir. Lydia Sari, ST, MT Penguji ▷ Dr. Ir. Yuli Kurnia Ningsih, MT, IPU ▷ Dr. Ir. R Deiny Mardian, ST, MT
5.	Rabu, 08 Januari 2025	15.30 – 16.30	162012300006 / Agung Setiaji	EVALUASI PERFORMANSI <i>FIXED</i> <i>WIRELESS ACCESS</i> (FWA) DI SISI PELANGGAN DALAM KONDISI KONFIGURASI TEKNOLOGI <i>MULTIPLE</i> <i>INPUT MULTIPEL OUTPUT</i> (MIMO) PADA <i>BASE TRANSCEIVER STATION</i> (BTS) YANG BERAGAM	Pembimbing: https://trisakti-ac- ▶ Dr. Ir. R Deiny Mardian, ST, MT id.zoom.us/j/97389131167?pwd=S3hGQld / Dr. Ir. Lydia Sari, ST, MT IMCt6bzhqSS9PTEJab3NDUT09 Penguji Prof. Dr. Ir. Indra Surjati, MT, IPU ▶ Syah Alam, S.Pd, MT, PhD
6.	Kamis, 09 Januari 2025	10.00 - 11.00	162012300002 / Abudhiya Harits Ulhaq Hadyan	ANALISIS DAN OPTIMALISASI PENGUNAAN ENERGI DI INDUSTRI ELEKTRONIK DALAM PENERAPAN SISTEM MANAJEMEN ENERGI BERBASIS ISO 50001:2018	Pembimbing: https://trisakti-ac- ▶ Dr. Ir. Chairul Gagarin Irianto, id.zoom.us/j/97389131167?pwd=S3hGQld MS / Syah Alam, S.Pd, MT, PhD IMCt6bzhqSS9PTEJab3NDUT09 Penguji ▶ ▶ Dr. Ir. Yuli Kurnia Ningsih, MT, IPU ▶ Dr. Ir. R Deiny Mardian, ST, MT
7.	Kamis, 09 Januari 2025	11.00 - 12.00	162012300005 / Muhammad Khaidir	ANALISIS ELEKRIKAL DCDV – <i>DATA CENTER DESIGN VALIDATION</i> TERHADAP SERTIFIKASI ANSI/TIA-942B	Pembimbing: https://trisakti-ac- ▶ Dr. Ir. Chairul Gagarin Irianto, MS / Syah Alam, S.Pd, MT, PhD id.zoom.us/j/97389131167?pwd=S3hGQld Penguji TMCt6bzhqSS9PTEJab3NDUT09 Penguji Dr. Ir. Yuli Kurnia Ningsih, MT, IPU ▶ Dr. Ir. R Deiny Mardian, ST, MT

8.	Kamis, 09 Januari 2025 13.00 – 14.00 1	162012300010 /	ANALISA KINERJA SDN	Pembimbing: https://trisakti-ac-
	A	Andree Ardiansjah K	CONTROLLER BERBASIS SEGMENT	Dr. Ir. R. Deiny Mardian, ST, MTid.zoom.us/j/97389131167?pwd=S3hGQld
		-	ROUTING IPV6 (SRV6) TERHADAP	/ Ir. Henry Candra, ST, MT, PhD TMCt6bzhqSS9PTEJab3NDUT09
			PERFORMA KUALITAS JARINGAN	
			TELEKOMUNIKASI	Penguji
				Prof. Dr. Ir. Indra Surjati, MT,
				IPU
				Dr. Ir. Yuli Kurnia Ningsih, MT,
				IPU
9.	Kamis, 09 Januari 2025 14.00 – 15.00 U	Uud Suseno Waji /	KLASIFIKASI MASALAH <i>PACKET LOSS</i>	Pembimbing: https://trisakti-ac-
	1	162012300009	PADA JARINGAN	Dr. Ir. R. Deiny Mardian, ST, MTid.zoom.us/j/97389131167?pwd=S3hGQld
			TRANSPORT TELEKOMUNIKASI LTE	/ Dr. Ir. Yuli Kurnia Ningsih, <u>TMCt6bzhqSS9PTEJab3NDUT09</u>
			MENGGUNAKAN <i>TWO-WAY</i>	MT, IPU
			ACTIVE MASUREMENT PROTOCOL	
			(TWAMP) BERDASARKAN ANALISIS QoS	Penguji
			DSCP 26 DAN 48	Prof. Dr. Ir. Indra Surjati, MT,
				IPU
				Ir. Henry Candra, ST, MT, PhD

Syarat dan Ketentuan :

- 1. Proposal lengkap sesuai dengan template yang ditetapkan oleh Fakultas (<u>http://fti.trisakti.ac.id/uploads/fti/downloads/lampiran-tugas-akhir.pdf</u>)
- 2. Slide Power Point materi proposal tesis.
- 3. Bukti hasil pemeriksaan *similarity* (Turnitin) dari Sekertariat Program Studi Magister Teknik Elektro, ambang batas similarity adalah tidak lebih dari 20% (*)
- 4. *Softcopy* KRS semester Gasal 2024/2025
- 5. Softcopy Transkrip terakhir, minimal telah menyelesaikan 29 SKS (mata kuliah wajib dan konsentrasi keahlian)
- 6. Tidak memiliki nilai kurang dari B untuk seluruh mata kuliah pada Kurikulum Program Magister Teknik Elektro
- 7. Mahasiswa mempresentasikan proposal tesis sesuai dengan jadwal seminar dengan durasi maksimal 15 menit
- 8. Revisi proposal tesis dikirimkan paling lambat 1 minggu ke email thesis-mte@trisakti.ac.id

Jakarta, 03 Januari 2025

Program Studi Magister Teknik Elektro FTI – Usakti

PERANCANGAN SENSOR GELOMBANG MIKRO BERBASIS CIRCULAR SPLIT RING RESONATOR DAN ELECTRIC FIELD COUPLED UNTUK KARAKTERISASI MATERIAL PADAT

PROPOSAL TESIS Disusun Oleh : Muhammad Nugrah Kusumah FTI / MTE : 162012300001

MAGISTER TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS TRISAKTI JAKARTA 2024

View

Ъ

X

🖄 Meeting

FORMULIR PENILAIAN OLEH DOSEN PENGUJI PROPOSAL TESIS

Nama Mahasiswa	: Muhammad Nugrah Kusumah				
NIM	: 162012300001				
Peminatan	: Telekomunikasi				
Judul	: PERANCANGAN SENSOR GELOMBANG MIKRO				
	BERBASIS CIRCULAR SPLIT RING RESONATOR DAN				
	ELECTRIC FIELD COUPLED UNTUK KARAKTERISASI				
	MATERIAL PADAT				

				Nilai	
No Kriteria Penilaian		Uraian Penilaian	Angka	Bobot	Angka x Bobot
1	Penulisan Proposal (20%)	Kejelasan tulisan dan bahasa yang digunakan.	85	10%	8,5
		Jumlah dan relevansi referensi primer (tesis, jurnal,prosiding, dll) yang digunakan (Catatan1)	85	5%	4,25
		Kebaruan dan mutu referensi	85	5%	4,25
2	Presentasi (10%)	Penyajian secara jelas, runut, tepat waktu	85	10%	8,5
3	Materi (50%)	Kejelasan identifikasi dan rumusan masalah	85	5%	4,25
		Kejelasan penulisan tujuan	85	5%	4,25
		Kejelasan dan kesesuaian rencana penyelesaian masalah (metodologi) dengan tujuan	85	10%	8,5
		Kebaruan materi (up to date)	85	10%	8,5
		Adanya perancangan sistem/ komponen/proses dan kompleksitas rancangan(Catatan 2)	85	20%	17
4	Penguasaan materi (20%)	Penguasaan materi	85	10%	8,5
	()	Penguasaan teori dasar	85	10%	8,5
		Jumlah			85

Kesimpulan: layak/tidak layak*) dilanjutkan sebagai Tesis

*) coret yang tidak sesuai

Catatan:

- Jumlah dan relevansi referensi primer:
 <5 nilai 70; 5 ≤jml ref ≤10 nilai 80;
 11 ≤jml ref ≤20 nilai 90; ≥ 50 nilai 100.
 - $11 \leq \text{Jmi}$ ref ≤ 20 miai 90; ≥ 50 miai 100.
- 2. Bila tidak ada perancangan nilai 50.

Jakarta, 08 Januari 2025 Dosen Penguji

Whi (Dr. Ir. Lydia Sari, ST, MT)

REKOMENDASI PERBAIKAN PROPOSAL TESIS

Nama	:	Muhammad Nugrah Kusumah
NIM	:	162012300001
Judul	:	PERANCANGAN SENSOR GELOMBANG MIKRO BERBASIS
		CIRCULAR SPLIT RING RESONATOR DAN ELECTRIC FIELD
		COUPLED UNTUK KARAKTERISASI MATERIAL PADAT

HAL-HAL YANG HARUS DIPERBAIKI

- 1. Halaman 8, penjelasan BPF salah satu saja (yang sesuai dengan gambar)
- 2. Persamaan 4, tambahkan penjelasan parameter frekuensi unloaded dan loaded
- 3. Persamaan 5 diperbaiki
- 4. Jelaskan alasan pemilihan target kinerja sensor

Jakarta, 08 Januari 2025 Dosen Penguji

(Dr. Ir. Lydia Sari, ST, MT)

Catatan :

Formulir ini diisi apabila mahasiswa dinyatakan lulus dengan catatan harus memperbaiki proposal atau tidak lulus ujian proposal Tesis dan harus dilampirkan pada proposal Tesis berikutnya.
FORMULIR PENILAIAN OLEH DOSEN PENGUJI PROPOSAL TESIS

Nama Mahasiswa	: Muhammad Nugrah Kusumah
NIM	: 162012300001
Peminatan	: Telekomunikasi
Judul	: PERANCANGAN SENSOR GELOMBANG MIKRO
	BERBASIS CIRCULAR SPLIT RING RESONATOR DAN
	ELECTRIC FIELD COUPLED UNTUK KARAKTERISASI
	MATERIAL PADAT

	Kriteria Penilaian		Nilai		
No		Uraian Penilaian	Angka	Bobot	Angka x Bobot
1	Penulisan Proposal (20%)	Kejelasan tulisan dan bahasa yang digunakan.	82	10%	
		Jumlah dan relevansi referensi primer (tesis, jurnal,prosiding, dll) yang digunakan (Catatan1)	82	5%	
		Kebaruan dan mutu referensi	82	5%	
2	Presentasi (10%)	Penyajian secara jelas, runut, tepat waktu	82	10%	
3	Materi (50%)	Kejelasan identifikasi dan rumusan masalah	82	5%	
		Kejelasan penulisan tujuan	82	5%	
		Kejelasan dan kesesuaian rencana penyelesaian masalah (metodologi) dengan tujuan	82	10%	
		Kebaruan materi (up to date)	82	10%	
		Adanya perancangan sistem/ komponen/proses dan kompleksitas rancangan(Catatan 2)	82	20%	
4	Penguasaan materi (20%)	Penguasaan materi	82	10%	
	× -7	Penguasaan teori dasar	82	10%	
Jumlah					82

Kesimpulan: layak/tidak layak*) dilanjutkan sebagai Tesis

*) coret yang tidak sesuai

Catatan:

- Jumlah dan relevansi referensi primer: <5 nilai 70; 5 ≤jml ref ≤10 nilai 80; 11 ≤jml ref ≤20 nilai 90; ≥ 50 nilai 100.
- 2. Bila tidak ada perancangan nilai 50.

Jakarta, 08 Januari 2025 Dosen Penguji

forthe (Ir. Henry Candra, ST, MT, PhD)

REKOMENDASI PERBAIKAN PROPOSAL TESIS

Nama	:	Muhammad Nugrah Kusumah
NIM	:	162012300001
Judul	:	PERANCANGAN SENSOR GELOMBANG MIKRO BERBASIS
		CIRCULAR SPLIT RING RESONATOR DAN ELECTRIC FIELD
		COUPLED UNTUK KARAKTERISASI MATERIAL PADAT

HAL-HAL YANG HARUS DIPERBAIKI

- 1. referensi yg dijadikan acuan spy diurutkan berdasarkan sitasi
- 2. Gambar diacu pada tulisan
- 3. gambar 1 diperbesar
- 4. Tabel 2 spesifikasi dimunculkan pada tujuan
- 5. flowchart tahapan penelitian
- 6. Gambar 3.1 dimensi

• • • •

Jakarta, 08 Januari 2025 Dosen Penguji

(Ir. Henry Candra, ST, MT, PhD)

Catatan :

Formulir ini diisi apabila mahasiswa dinyatakan lulus dengan catatan harus memperbaiki proposal atau tidak lulus ujian proposal Tesis dan harus dilampirkan pada proposal Tesis berikutnya.

FORMULIR PENILAIAN OLEH DOSEN PENGUJI PROPOSAL TESIS

Nama Mahasiswa	: Muhammad Nugrah Kusumah
NIM	: 162012300001
Peminatan	: Telekomunikasi
Judul	: PERANCANGAN SENSOR GELOMBANG MIKRO
	BERBASIS CIRCULAR SPLIT RING RESONATOR DAN
	ELECTRIC FIELD COUPLED UNTUK KARAKTERISASI
	MATERIAL PADAT

			Nilai		
No	Kriteria Penilaian	Uraian Penilaian	Angka	Bobot	Angka x Bobot
1	Penulisan Proposal (20%)	Kejelasan tulisan dan bahasa yang digunakan.	90	10%	9
		Jumlah dan relevansi referensi primer (tesis, jurnal,prosiding, dll) yang digunakan (Catatan1)	90	5%	4.5
		Kebaruan dan mutu referensi	90	5%	4.5
2	Presentasi (10%)	Penyajian secara jelas, runut, tepat waktu	90	10%	9
3	Materi (50%)	Kejelasan identifikasi dan rumusan masalah	90	5%	4.5
		Kejelasan penulisan tujuan	90	5%	4.5
		Kejelasan dan kesesuaian rencana penyelesaian masalah (metodologi) dengan tujuan	90	10%	9
		Kebaruan materi (up to date)	90	10%	9
		Adanya perancangan sistem/ komponen/proses dan kompleksitas rancangan(Catatan 2)	90	20%	18
4	Penguasaan materi (20%)	Penguasaan materi	90	10%	9
	()	Penguasaan teori dasar	90	10%	9
Jumlah					90

Kesimpulan: layak/tidak layak*) dilanjutkan sebagai Tesis

*) coret yang tidak sesuai

Catatan:

- Jumlah dan relevansi referensi primer:
 <5 nilai 70; 5 ≤jml ref ≤10 nilai 80;
 11 ≤jml ref ≤20 nilai 90; ≥ 50 nilai 100.
- 2. Bila tidak ada perancangan nilai 50.

Jakarta, 08 Januari 2025 Dosen Penguji

-outur

Syah Alam, S.Pd, MT, PhD

Prof. Dr. Ir. Indra Surjati, MT, IPU

REKOMENDASI PERBAIKAN PROPOSAL TESIS

Nama	:	Muhammad Nugrah Kusumah
NIM	:	162012300001
Judul : PERANCANGAN SENSOR GELOMBANG MIKRO		PERANCANGAN SENSOR GELOMBANG MIKRO BERBASIS
		CIRCULAR SPLIT RING RESONATOR DAN ELECTRIC FIELD
		COUPLED UNTUK KARAKTERISASI MATERIAL PADAT

HAL-HAL YANG HARUS DIPERBAIKI

- 1. Perbaiki sesuai dengan rekomendasi dari penguji
- 2. Teori perturbasi dijelaskan lebih detail
- 3. Perbaiki rumus Normalized Sensitivity
- 4. Cek kembali target untuk parameter yang ditentukan termasuk NS, Akurasi dll
- 5. Abstrak disesuaikan dengan latar belakang (kontribusi utama perlu dijelaskan)
- 6. Rumusan masalah perlu dibuat lebih detail disesuaikan dengan literatur review yang diusulkan di Tabel 2. Spesifikasi Alat
- 7. Urutan referensi tabel disesuaikan dengan nomor referensi.
- 8. Gambar 1 diperbesar
- 9. Rumus ditambahkan notasi dan satuan
- 10. Ditambahkan diagram alir penelitian yang ditampilkan hanya diagram alir perancangan
- 11. Perlu dijelaskan alasan pemilihan frekuensi kerja.

Jakarta, 08 Januari 2025 Dosen Penguji

arther

Syah Alam, S.Pd, MT, PhD

Prof. Dr. Ir. Indra Surjati, MT, IPU

Catatan :

Formulir ini diisi apabila mahasiswa dinyatakan lulus dengan catatan harus memperbaiki proposal atau tidak lulus ujian proposal Tesis dan harus dilampirkan pada proposal Tesis berikutnya.

REKOMENDASI PERBAIKAN PROPOSAL TESIS

Dosen Penguji: Syah Alam, S.Pd, MT, PhD dan Prof. Dr. Ir. Indra Surjati, MT, IPU

NO	HAL-HAL YANG HARUS DIPERBAIKI	PERBAIKAN YANG SUDAH DILAKUKAN
1	Perbaiki sesuai dengan rekomendasi dari penguji.	Seluruh perbaikan sudah mengikuti rekomendasi dari penguji.
2	Teori perturbasi dijelaskan lebih detail.	Teori perturbasi sudah ditambahkan (halaman 7)
3	Perbaiki rumus Normalized Sensitivity.	Rumus sudah diperbaiki (halaman 9).
4	Cek kembali target untuk parameter yang ditentukan termasuk NS, Akurasi, dll.	Target sudah diperiksa.
5	Abstrak disesuaikan dengan latar belakang (kontribusi utama perlu dijelaskan).	Penjelasan sudah ditambahkan (halaman 1)
6	Rumusan masalah perlu dibuat lebih detail disesuaikan dengan literatur review yang diusulkan di Tabel 2. Spesifikasi Alat	Rumusan masalah sudah dilengkapi (halaman 3).
7	Urutan referensi tabel disesuaikan dengan nomor referensi.	Nomor referensi sudah diurutkan (halman 10).
8	Gambar 1 diperbesar.	Gambar sudah diperbesar (halman 9).
9	Rumus ditambahkan notasi dan satuan.	Notasi sudah ditambahkan (halaman 6-9).
10	Ditambahkan diagram alir penelitian yang ditampilkan hanya diagram alir perancangan.	Diagram alir penelitian sudah dilengkapi (halaman 12).
11	Perlu dijelaskan alasan pemilihan frekuensi kerja.	Alasan pemilihan frekuensi kerja sudah dijelaskan (halaman 13).

Dosen Penguji : Dr. Ir. Lydia Sari, ST, MT

NO	HAL-HAL YANG HARUS DIPERBAIKI	PERBAIKAN YANG SUDAH DILAKUKAN
1	Halaman 8, penjelasan BPF salah satu saja (yang sesuai dengan gambar).	Penjelasan BPF sudah sesuai dengan gambar (halaman 10).
2	Persamaan 4, tambahkan penjelasan parameter frekuensi unloaded dan loaded.	Frekuensi unloaded dan loaded sudah dijelaskan (halaman 8).
3	Persamaan 5 diperbaiki.	Persamaan 5 sudah diperbaiki (halaman 5).
4	Jelaskan alasan pemilihan target kinerja sensor	Alasan pemilihan target sudah dijelaskan (halaman 13).

NO	HAL-HAL YANG HARUS DIPERBAIKI	PERBAIKAN YANG SUDAH DILAKUKAN
1	Referensi yg dijadikan acuan spy diurutkan berdasarkan sitasi.	Sitasi sudah sesuai urutan (halaman 10).
2	Gambar diacu pada tulisan.	Gambar sudah diacu pada tulisan ditandai dengan huruf tebal.
3	Gambar 1 diperbesar.	Gambar 1 sudah diperbesar (halaman 9).
4	Tabel 2 spesifikasi dimunculkan pada tujuan.	Spesifikasi sudah ditambahkan pada tujuan (halaman 5).
5	Flowchart tahapan penelitian.	Flowchart tahapan penelitian sudah ditambahkan (halaman 12).
6	Gambar 3.1 dimensi.	Gambar 31 (berubah menjadi gambar 32 karena berubah urutan gambar) sudah diperbaiki (halaman 33)

PERANCANGAN SENSOR GELOMBANG MIKRO BERBASIS CIRCULAR SPLIT RING RESONATOR DAN ELECTRIC FIELD COUPLED UNTUK KARAKTERISASI MATERIAL PADAT

PROPOSAL TESIS Disusun Oleh : Muhammad Nugrah Kusumah FTI / MTE : 162012300001

MAGISTER TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS TRISAKTI JAKARTA 2024

ABSTRAK

Sensor gelombang mikro telah banyak digunakan untuk karakterisasi material karena memiliki keunggulan dalam akurasi dan sensitivitas. Penelitian ini mengembangkan sensor gelombang mikro berbasis struktur Circular Split Ring Resonator (SRR) dan Electric Field Coupled (ELC) resonator dengan dual port dan karakteristik bandstop filter. Circular SRR dirancang untuk meningkatkan konsentrasi medan listrik pada resonator yang berfungsi sebagai sensing area, sementara ELC menciptakan area kapasitif pada celah lengan induktif resonator. Sensor dirancang menggunakan perangkat lunak simulasi HFSS 15.0 untuk menganalisis performa resonator, termasuk frekuensi resonansi dan medan listrik optimal pada permitivitas 1-10. Iterasi dilakukan untuk memperoleh desain yang menghasilkan Frequency Detection Resolution (FDR) kurang dari 0.04, akurasi rata-rata lebih dari 95%, dan Normalized Sensitivity (NS) lebih dari 0.1%. Validasi dilakukan dengan membandingkan hasil simulasi dan pengukuran menggunakan sensor hasil fabrikasi. Sensor ini memiliki potensi menghasilkan konsentrasi medan listrik tinggi pada resonator, sensitivitas optimal, dan akurasi tinggi dalam mendeteksi perubahan permitivitas material padat. Desain sensor yang compact, mudah difabrikasi, dan biaya produksinya rendah memungkinkan penggunaannya secara luas dalam aplikasi seperti manufaktur makanan, aplikasi medis, dan lingkungan industri. Dengan keunggulan tersebut, sensor gelombang mikro ini berkontribusi besar terhadap pengembangan teknologi karakterisasi material padat secara efektif dan efisien. Kontribusi utama dari penelitian ini untuk menghasilkan sensor gelombang mikro dengan nilai rata-rata akurasi dan sensitivitas yang tinggi serta nilai deteksi resolusi (FDR) yang paling minimum untuk karakterisasi material padat. Kontribusi utama dari penelitian ini untuk menghasilkan sensor gelombang mikro dengan nilai rata-rata akurasi dan sensitivitas yang tinggi serta nilai deteksi resolusi (FDR) yang paling minimum untuk karakterisasi material padat.

Kata Kunci: Sensor Gelombang Mikro, Circular SRR, ELC, Frequency Detection Resolution, Akurasi, Normalized Sensitivity, HFSS 15.0

1. Latar Belakang

Sensor adalah perangkat yang berfungsi mengubah fenomena fisik menjadi sinyal listrik yang dapat diproses lebih lanjut [1]. Teknologi sensor terus berkembang pesat dan melibatkan berbagai bidang seperti elektronik, fotonik, mekanika, kimia, dan biologi [2]. Selain itu, sensor juga dikelompokkan berdasarkan berbagai fenomena fisik, termasuk suhu, tekanan, posisi, gerak rotasi, magneto-elektrik, foto-elektrik, elektro-plastik, termo-plastik, transformasi kimia, dan lainnya [3]. Sensor dapat dibagi menjadi dua jenis utama berdasarkan cara kerjanya, yaitu sensor aktif dan sensor pasif [4]. Sensor aktif memerlukan sumber energi eksternal untuk menghasilkan sinyal yang digunakan dalam mendeteksi fenomena fisik. Sebaliknya, sensor pasif tidak memerlukan sumber energi tambahan, melainkan merespon perubahan dalam lingkungan dengan mengubah sifat fisiknya. Salah satu jenis sensor pasif yang banyak digunakan dalam berbagai aplikasi adalah sensor gelombang mikro yang memiliki performansi yang tinggi dalam hal akurasi dan sensitivitas.

Sensor gelombang mikro dalam perkembangannya sering digunakan untuk karakterisasi material dalam berbagai bidang, seperti manufaktur makanan, aplikasi medis, dan lingkungan industri [5]. Sensor gelombang mikro akan memberikan respon terhadap material tergantung pada permitivitasnya [6]. Material padat yang diuji (*Sample Under Test*) diletakan pada medan listrik tertinggi di struktur resonator yang merupakan *sensing area* pada sensor gelombang mikro. Dalam perancangannya parameter yang perlu diperhatikan untuk mengetahui performansi sensor gelombang mikro adalah *Frequency Detection Resolution* (FDR), rata-rata akurasi, dan *Normalized Sensitivity* (NS). Tantangan utama dalam merancang sensor gelombang mikro adalah meningkatkan nilai akurasi dan sensitivitas [7].

Beberapa penelitian sebelumnya telah mengusulkan sensor gelombang mikro berbasis *split ring resonator* (SRR) untuk meningkatkan akurasi dan sensitivitas [8]. Struktur SRR pada sensor gelombang mikro menyediakan platform yang fleksibel untuk membangun struktur topologi dengan *coupling distributions* yang kompleks, yang memungkinkan pengendalian gelombang elektromagnetik [9].

Sehingga, implentasi SRR pada resonator bertujuan untuk menghasilkan medan listrik yang tinggi pada sensor gelombang mikro [10].

Selain itu pemanfaatan struktur *electric field coupled* (ELC) resonator digunakan untuk menciptakan lengan induktif pada resonator sehingga terdapat area kapasitif yang berada pada celah antara strip di tengah resonator [11]. Struktur resonator dengan basis ELC memiliki keunggulan seperti tingkat simetri geometris yang tinggi, kopling magnetoelektrik yang minimal, dan kemampuan untuk berinteraksi dengan komponen medan listrik sejajar maupun tegak lurus [12]. Tujuan dari pengunaan struktur ELC pada sensor gelombang mikro ada menghasilkan *sensing area* pada celah lengan induktif di tengah resonator. Sensor gelombang mikro juga memiliki keunggulan desain yang *compact*, biaya produksi yang rendah, dan fabrikasi yang mudah [13].

Pada penelitian ini diusulkan sensor gelombang mikro dengan basis struktur resonator *circular* SRR dan ELC dengan *dual port* dengan karakteristik *bandstop filter*. Struktur *circular* SRR digunakan sebagai pengkonsentrasi medan listrik sedangkan struktur ELC digunakan untuk menghasilkan *sensing area* pada celah lengan induktif di tengah resonator. Sampel akan diletakan di atas permukaan sensor dan permitivitas material diamati dengan pergeseran frekuensi pada parameter S₂₁. Kontribusi utama dari penelitian ini untuk menghasilkan sensor gelombang mikro dengan nilai rata-rata akurasi dan sensitivitas yang tinggi serta nilai deteksi resolusi (FDR) yang paling minimum untuk karakterisasi material padat.

2. Rumusan Masalah

Rumusan masalah pada penelitian adalah:

 Bagaimana merancang sensor gelombang mikro yang beroperasi pada rentang frekuensi 0.5 - 2 GHz dengan spesifikasi S₂₁ bernilai <-10 dB, FDR bernilai <0.04, rata-rata akurasi bernilai >95% dan NS bernilai >0.1% untuk mengkarakterisasi permitivitas dari material padat menggunakan perangkat lunak HFSS 15.0.

- 2. Bagaimana merealisasikan dan memvalidasi sensor gelombang mikro berbasis *Circular* SRR dan ELC untuk karaterisasi material padat dengan permitivitas 1 sampai 10.
- Bagaimana melakukan validasi dan pengukuran perfomansi sensosor gelombang mikro dilihat dai parameter *Frequency Detection Resolution* (FDR), rata-rata akurasi, dan *Normalized Sensitivity* (NS).

3. Batasan Masalah

Batasan masalah pada penelitian adalah:

- 1. Sensor gelombang mikro yang dirancang berbasis struktur *circular* SRR dan ELC dengan *dual port* dengan karakteristik *bandstop filter*.
- 2. Karakterisasi permitivitas dari material padat diamati dengan melakukan observasi pergeseran frekuensi pada parameter S_{21} .
- 3. Sensor gelombang mikro dirancang menggunakan substrat FR-4 dengan konstanta dielektrik (ε_r) sebesar 4.3 dan ketebalan substrat sebesar 1.6 mm.
- 4. Parameter penyusun sensor gelombang mikro terdiri atas tan δ bernilai sebesar 0.0265 dan Z sebesar 50 Ω
- 5. Perancangan sensor gelombang mikro dilakukan menggunakan perangkat lunak HFSS 15.0.
- Permitivitas yang dikarakterisasi adalah material padat dengan dengan permitivitas (ε_r) 1 sampai 10.
- 7. Parameter yang diamati adalah *Frequency Detection Resolution* (FDR), rata-rata akurasi, dan *Normalized Sensitivity* (NS).
- 8. Sensor gelombang mikro yang paling optimal akan difabrikasi dan diukur menggunakan *Vector Network Analyzer* (VNA) dengan memperhatikan parameter serupa untuk memvalidasi hasil simulasi dan pengukuran.

4. Tujuan Penelitian

Tujuan penelitian ini adalah:

- Merancang sensor gelombang mikro yang beroperasi pada rentang frekuensi 0.5 - 2 GHz dengan spesifikasi S₂₁ bernilai <-10 dB, FDR bernilai <0.04, rata-rata akurasi bernilai >95% dan NS bernilai >0.1% untuk mengkarakterisasi permitivitas dari material padat menggunakan perangkat lunak HFSS 15.0.
- 2. Merealisasikan dan memvalidasi sensor gelombang mikro berbasis *Circular* SRR dan ELC untuk karaterisasi material padat dengan permitivitas 1 sampai 10.
- 3. Memvalidasi dan mengukuran perfomansi sensosor gelombang mikro dilihat dai parameter *Frequency Detection Resolution* (FDR), rata-rata akurasi, dan *Normalized Sensitivity* (NS).

5. Manfaat Penelitian

Manfaat penelitian ini adalah:

- 1. Menghasilkan sensor gelombang mikro untuk karakterisasi material padat.
- Menghasilkan teknologi tepat guna berbentuk sensor dengan performansi tinggi dan biaya terjangkau.

6. Kajian Pustaka

6.1 Karakterisasi Material

Dalam beberapa tahun terakhir, karakterisasi material telah menjadi hal yang sangat penting karena kemampuannya untuk memberikan informasi terhadap sifat suatu material. Hal ini dimanfaatkan dalam berbagai bidang, seperti pengendalian kualitas makanan, *bio-sensing*, dan pendeteksian lapisan bawah permukaan, untuk menganalisis komposisi material serta transformasi fisik dan kimianya [14]. Untuk mencapai karakterisasi material yang akurat, metode yang digunakan sangat bergantung pada teknik resonansi yang umumnya dibagi menjadi dua yaitu resonator dan *profound disturbance* [15].

Teknik resonansi dirancang untuk merepresentasikan karakteristik material pada satu atau beberapa frekuensi tertentu dengan tingkat akurasi yang tinggi. Kemampuan teknik resonansi dalam mendeteksi material dengan sensitivitas tinggi menjadikannya sesuai untuk memenuhi kebutuhan industri dan pasar. Karakteristik dielektrik yang berbeda pada substrat, seperti koefisien transmisi dan refleksi, dapat digunakan untuk mengkarakterisasi sensor [16].

6.2 Konsep Dasar Sensor Gelombang Mikro

Sensor gelombang mikro merupakan perangkat yang memanfaatkan sifat gelombang elektromagnetik untuk mendeteksi perubahan pada lingkungan sekitarnya. Performa sensor gelombang mikro sangat dipengaruhi oleh bahan dan ukuran substrat dielektrik, oleh karena itu bahan dan ketebalan substrat dielektrik perlu ditentukan dalam proses desain [17]. Pada penelitian ini material substrat yang digunakan adalah FR-4 dengan konstanta dielektrik (ε_r) sebesar 4.3 dan ketebalan substrat sebesar 1.6 mm. Pemilihan material FR-4 sebagai substrat karena harganya yang terjangkau, daya tahan, dan kompatibilitasnya dengan aplikasi frekuensi tinggi [18].

Teori perturbasi merupakan metode untuk menentukan perubahan energi akibat adanya gangguan kecil, seperti medan listrik atau magnet [19]. Dalam sensor gelombang mikro, teori perturbasi digunakan untuk mengkarakterisasi permitivitas *sample under test* (SUT). Interaksi pada medan Listrik (*E-Field*) pada resonator terjadi dengan menempatkan SUT di atasnya, sehingga menyebabkan perubahan pada medan listrik resonator.

Perubahan pada f_r terhadap karakterisasi SUT saling berhubungan dijelaskan dalam persamaan (1) sebagai berikut [20]:

$$\frac{\Delta f_r}{f_r} = \frac{\int v \left(\Delta \varepsilon E_1 \cdot E_0 + \Delta \mu H_1 \cdot H_0\right) dv}{\int v \left(\varepsilon_0 |E_0|^2 + \mu_0 \cdot |H_0|^2\right) dv} \tag{1}$$

Dengan :

∆f <u>r</u> fr	: Perubahan relatif frekuensi resonansi
Δε	: Perubahan permitivitas (F/m)
Δμ	: Perubahan permeabilitas (H/m)

E_{\star} E_{\circ}	· Medan listrik (V/m)
$L_1 \cdot L_0$. IVICUALI HSUIK (V/III)

 H_1 . H_0 : Medan magnetik (A/m)

- ε_0 : Permitivitas vakum (F/m)
- μ_0 : Permeabilitas vakum (H/m)
- dv : Elemen volume (m³)

Berdasarkan persamaan (1) menunjukkan bahwa f_r adalah frekuensi resonansi sensor gelombang mikro sebelum diletakan SUT, sedangkan Δf_r adalah pergeseran frekuensi resonansi sebelum dan sesudah karakterisasi SUT. Perubahan pada permitivitas dan permeabilitas masing-masing dinyatakan sebagai $\Delta \epsilon$ dan $\Delta \mu$ dengan volume perturbasi dilambangkan sebagai v. Distribusi medan listrik dan magnet tanpa dan dengan perturbasi dilambangkan dengan E₀, H₀, dan E₁, H₁. Pada penelitian ini parameter yang diperhatikan adalah interaksi antara medan Listrik dan SUT, karena SUT merpakan material dielektrik sehingga medan magnet diasumsikan bernilai 0.

Berdasarkan persamaan (1), perubahan pada nilai permitivitas atau permeabilitas SUT menyebabkan perubahan pada frekuensi resonansi. Hal tersebut memvalidasi bahwa meletakan SUT pada sensing area menyebabkan perturbasi pada medan listrik (*E-Field*) yang menyebabkan pergeseran frekuensi resonansi.

6.3 Parameter Sensor Gelombang Mikro

Parameter sensor gelombang mikro meliputi Frekuensi resonansi (f_r), *Frequency Detection Resolution* (FDR), dan *Normalized Sensitivity* (NS), yang masing-masing berperan penting dalam menentukan kinerja sensor. Frekuensi resonansi (f_r) pada sensor gelombang mikro dapat ditentukan dengan menggunakan persamaan (2) sebagai berikut [21]:

$$f_r = \frac{1}{2\pi\sqrt{LC}} \frac{GHZ}{GHZ}$$
(2)

Dengan:

f _r	: Frekuensi resonansi (GHz)
2π	: Konstanta siklus penuh (2×3.14)
L	: Induktansi (H)

C : Kapasitansi (F)

Pada persamaan (2) menunjukkan hubungan antara induktansi dan kapasitansi dalam sebuah sistem resonator. Induktansi merupakan kemampuan menahan perubahan arus, sedangkan kapasitansi merupakan kapasitas menyimpan muatan.

Selanjutnya, frekuensi resonansi dari struktur SRR sangat ditentukan dan dipengaruhi oleh panjang lengan dari resonator. Panjang lengan dari struktur SRR untuk frekuensi resonansi tertentu dapat ditentukan menggunakan persamaan (3) sebagai berikut:

$$l = \frac{c}{2\sqrt{\varepsilon_{eff}}} \times \frac{1}{f_r} mm$$
(3)

Dengan:

l	: Panjang total resonator (mm)
С	: Kecepatan cahaya (3×10 ⁸)
E _{eff}	: Permitivitas efektif
fr	: Frekuensi resonansi (GHz)

Hubungan antara perubahan frekuensi resonansi dan nilai permitivitas SUT disebut sebagai *Frequency Detection Resolution* (FDR), yang dapat dihitung menggunakan persamaan (4) sebagai berikut [22]:

$$FDR = \frac{\Delta f}{\Delta \varepsilon_r} = \frac{(f_{unloaded} - f_{loaded})}{\varepsilon_{r(height)} - \varepsilon_{r(Reference)}} GHZ$$
(4)

Dengan:

FDR	: Rentang deteksi perubahan frekuensi terkecil (GHz)
Δf	: Perubahan absolut frekuensi resonansi (GHz)
$\Delta \varepsilon_r$: Perubahan permitivitas relatif
f _{unloaded}	: Frekuensi sebelum diletakan SUT (GHz)
f _{loaded}	: Frekuensi setelah diletakan SUT (GHz)
^E r(height)	: Permitivitas tertinggi
Er(Reference)	: Permitivitas referensi
Pada persam	naan (4) Δf merupakan selisih antara antara frekuensi resonansi
ensor gelomba	ng mikro sebelum diletakan SUT (f _{unloaded}) dan setelah

diletakan SUT (f_{loaded}) sedangkan $\Delta \varepsilon_r$ merupakan selisih antara permitivitas tertinggi ($\varepsilon_{r(height)}$) dan permitivitas yang menjadi referensi $\varepsilon_{r(Reference)}$. Secara umum, nilai referensi permitivitas yang digunakan adalah *vacuum* dengan $\varepsilon_r =$ 1 [23].

Nilai *Normalized Sensitivity* (NS) dapat dihitung menggunakan persamaan (5) sebagai berikut [24]:

$$NS = \frac{1}{\Delta \varepsilon_r} \times \left(\frac{f_{unloaded} - f_{loaded}}{f_{unloaded}}\right) \%$$
(5)

Dengan:

NS	: Normalized Sensitivity (%)
Δε _r	: Perubahan permitivitas relatif
f _{unloaded}	: Frekuensi sebelum diletakan SUT (GHz)
floaded	: Frekuensi setelah diletakan SUT (GHz)

6.4 Teori Dasar Resonator

Resonator merupakan suatu struktur yang didasarkan pada rangkaian paralel elemen lumped atau *quasilumped-element equivalent circuits* yang disusun secara paralel untuk membatasi energi elektromagnetik [25]. Salah satu aplikasi resonator adalah sebagai *bandstop filter* yang digunakan pada perancangan sensor gelombang mikro pada penelitian ini. *Bandstop filter* memiliki keunggulan dengan koefisien refleksi yang lebih tinggi di wilayah *stopband*, yang memungkinkan pengukuran fase koefisien refleksi dilakukan dengan lebih akurat, menjadikannya pilihan yang lebih tepat untuk diaplikasikan pada sensor gelombang mikro [26].

Gambar 1. Perbedaan Respon BPF dan BSF Universitas Trisakti | 9

Gambar 1 menunjukkan perbedaan respons antara *Bandpass Filter* (BPF) dan (BSF). BPF dirancang untuk melewatkan sinyal dalam rentang frekuensi tertentu, yang ditunjukkan oleh daerah antara frekuensi *cutoff* f_{c1} dan f_{c2} , sementara frekuensi di luar rentang ini akan teredam. Sebaliknya, BSF berfungsi untuk meredam sinyal dalam rentang frekuensi tertentu antara f_{c1} dan f_{c2} , sedangkan sinyal di luar rentang tersebut akan dilewatkan. Grafik BPF menunjukkan peningkatan gain di daerah tengah rentang frekuensi, sedangkan grafik BSF menunjukkan penurunan *gain* (*notch*) di frekuensi target. BSF memungkinkan respons yang lebih fleksibel, termasuk mode operasi seperti *bandstop, bandpass, dan all-pass* menggunakan struktur filter tingkat ketiga tanpa memerlukan pengaturan kopling yang dapat disesuaikan [27].

6.5 Studi Literatur

Perancangan sesor gelombang mikro pada penelitian mengacu pada 5 referensi yang dimuat pada **tabel 1**.

Reference	Years	Model Port	R (Port SUT	Permittivity Range	Frequency (GHz)	Parameters		
			Port				FDR	Accuracy (%)	NS (%)
[19]	2022	U-shaped resonator	Single Port	Solid Material	1 ~ 4.3	1.21 2.10	0.009 0.043	99.02 96.44	0.761 1.150
[21]	2023	Triple- rings CSRR	Dual Port	Semi- solid Material	1.0006 ~ 78.4	2.5	0.042	96	0.003
[28]	2022	Double Split Ring Resonator	Dual Port	Solid and Liquid	2~5.65 31.5~61	2.45	0.060 0.014	93.63 97.41	2.58 0.30
[29]	2023	Curve-feed CSRR	Dual Port	Solid	1.0006~4.4	2.5	0.095	99.77	1.072
[30]	2024	Tweaking ELC resonator	Dual Port	Solid Material	1 ~ 10	0.82	0.012	96.72	1.492

Tabel 1. Tabel Meta Analisis

Pada referensi [19] sensor gelombang mikro yang dirancang memiliki struktur resonator berbasis *U-shaped resonator* dengan frekuensi resonansi masing-masing *sensing area* pada resonator sebesar 1.21 GHz dan 2.10 GHz untuk karakterisasi material padat dengan permitivitas 1 sampai 4.3. Material padat yang dikarakterisasi adalah udara, RO5880, RO4003C, dan FR4 dengan permitivitas masing-masing material 1, 2.2, 3.68, dan 4.3. Berdasarkan hasil pengukuran dan perhitungan nilai FDR, rata-rata akurasi dan NS yang

diperoleh pada *sensing area* pertama adalah 0.009, 99.02%, dan 1.072% sedangkan paa sensing area kedua adalah 0.043, 96.44%, dan 1.150%

Pada referensi [21] sensor gelombang mikro yang dirancang memiliki struktur *Triple-rings* CSRR dengan frekuensi resonansi sebesar 2.5 GHz untuk karakterisasi material semi padat dengan permitivitas 1.0006 sampai 78.4. Material padat yang dikarakterisasi adalah tabung kosong, *Turmeric, Java Turmeric, Black Turmeric, Mango Ginger* dan DI *Water* dengan permitivitas masing-masing material 1.0006, 34.52, 45.6, 46.68, 59.61, dan 78.4. Berdasarkan hasil pengukuran dan perhitungan nilai FDR, rata-rata akurasi dan NS yang diperoleh 0.042, 96%, dan 0.003%.

Pada referensi [28] sensor gelombang mikro yang dirancang memiliki struktur resonator berbasis *double split ring resonator* dengan frekuensi resonansi sebesar 2.45 GHz untuk karakterisasi material padat dan cair dengan masing-masing material memiliki permitivitas 2 sampai 5.65 dan 31.5 sampai 61. Material padat yang dikarakterisasi adalah teflon, resin, *epoxy glass, urethane*, FR4, dan *ceramic* dengan permitivitas 2.00, 3.88, 4.60, 3.24, 4.07, dan 5.65. Berdasarkan hasil pengukuran dan perhitungan nilai FDR, rata-rata akurasi dan NS yang diperoleh 0.060, 93.63%, dan 2.58%. Sedangkan pada saat karakterisasi material cair menggunakan etanol konsentrasi 30%, 50%, dan 70% dengan setiap konsentrasi memiliki permitivitas 61, 47, dan 31.5. Berdasarkan hasil pengukuran dan perhitungan nilai FDR, rata-rata akurasi dan NS yang diperoleh 0.014, 97.41%, dan 0.30%.

Pada referensi [29] sensor gelombang mikro yang dirancang memiliki struktur resonator berbasis *curved-feed* CSRR dengan frekuensi resonansi sebesar 2.5 GHz untuk karakterisasi material padat dengan permitivitas 1.0006 sampai 4.4. Material padat yang dikarakterisasi adalah udara, Roger 5880, Roger 4350, dan FR4 dengan permitivitas masing-masing material 1.0006, 2.2, 3.66, dan 4.4. Berdasarkan hasil pengukuran dan perhitungan nilai FDR, rata-rata akurasi dan NS yang diperoleh 0.095, 99.77%, dan 0.761%.

Pada referensi [30] sensor gelombang mikro yang dirancang memiliki struktur resonator berbasis *tweaking* ELC *resonator* dengan frekuensi resonansi sebesar 0.82 GHz untuk karakterisasi material padat *vacuum* dengan permitivitas 1 sampai 10. Berdasarkan hasil pengukuran dan perhitungan nilai FDR, rata-rata akurasi dan NS yang diperoleh 0.012, 96.72%, dan 1.492%.

Berdasarkan pada 5 refrensi yang menjadi acuan pada penelitian ini, maka akan dirancang sensor gelombang mikro dengan yang memiliki keunggulan terutama dari sisi nilai FDR yang kecil serta akurasi yang tinggi.

7. Metodologi Penelitian

7.1 Metodologi Penelitian

Untuk memperoleh tujuan pada penelitian ini, dilakukan tahapan-tahapan yang dirancang secara sistematis yang ditunjukan pada diagram alir penelitian pada gambar 2.

Gambar 2. Diagram Alir Penelitian

Pada **gambar 2** menunjukkan tahapan penelitian secara sistematis dengan detail sebagai berikut:

a. Studi literatur

Tahap pertama pada penelitian ini dimulai dengan mengumpulkan bahan literatur sebagai sumber referensi pada penelitian ini, seperti jurnal dan buku yang dengan topik yang relevan mengenai sensor gelombang mikro.

b. Menentukan spesifikasi dan material sensor gelombang mikro

Tahapan kedua pada penelitian ini adalah menentukan spesifikasi dan material sensor gelombang mikro, spesifikasi ditentukan berdasarkan studi literatur sudah dilakukan pada fererensi [30]. Sedangkan material FR-4 dipilih karena memiliki harga yang terjangkau, daya tahan, dan kompatibilitasnya pada frekuensi tinggi.

 Merancang dan mensimulasikan pengembangan model sensor gelombang mikro serta menganalisis performanya
 Tahapan ketiga pada penelitian ini adalah merancang pengembangan model

sensor gelombang mikro yang dilakukan menggunakan perangkat lunak, dilakukan simulasi untuk mengetahui performa dari pengembangan model sensor gelombang mikro dengan meletakan SUT dengan permitivitas 1-10 dengan tujuan memperoleh desain resonator sensor gelombang mikro yang paling optimal.

d. Mengiterasi ukuran resonator gelombang mikro dan menganalisis performanya

Tahapan keempat pada penelitian ini adalah mengiterasi desain resonator sensor gelombang mikro yang paling optimal pada pengembangan model untuk mengetahui pengaruh perubahan bentuk resonator pada performa sensor gelombang mikro. Tujuan iterasi ini adalah memperoleh desain yang paling optimal dibandingan tahapan pengembangan model.

e. Melakukan iterasi pada ukuran dan parameter SUT serta menganalisis pengaruh iterasi terhadap performa sensor gelombang mikro

Tahapan kelima pada penelitian ini adalah mengiterasi ukuran dari SUT yang diletakan diatas diatas sensor gelombang mikro untuk mengetahui pengaruh perubahan ukuran SUT pada performa sensor gelombang mikro. Tujuan iterasi ini adalah memperoleh ukuran SUT yang paling optimal untuk dikarakterisasi pada sensor gelombang mikro.

 f. Melakukan validasi dan pengukuran sensor gelombang mikro yang sudah difabrikasi

Tahapan terakhir pada penelitian ini adalah melakukan validasi terhadap sensor gelombang mikro yang sudah difabrikasi untuk mengetahui perbandingan performa sensor gelombang mikro dari hasil simulasi dan pengukuran.

Pada penelitian ini sensor gelombang mikro dirancang menggunakan perangkat lunak HFSS 15.0 untuk memperoleh desain resonator yang optimal dan menganalisis respon terhadap SUT (*Sample Under Test*) dengan permitivitas 1 sampai 10. Proses iterasi dilakukan pada ukuran resonator untuk menentukan frekuensi resonansi (f_r) dan medan listrik (*E-Field*) tertinggi sebagai *sensing area*. Kemudian, dilakukan iterasi pada ukuran SUT untuk mengetahui dampaknya terhadap parameter *Frequency Detection Resolution* (FDR), akurasi rata-rata, dan *Normalized Sensitivity* (NS). Setelah desain resonator optimal diperoleh, dilakukan perbandingan hasil simulasi dengan pengukuran menggunakan sensor hasil fabrikasi.

Secara keseluruhan tahapan perancangan sensor gelombang mikro dapat dilihat diagram alir pada **gambar 3**.

Gambar 3. Diagram Alir Perancangan Sensor Gelombang Mikro

7.2 Spesifikasi Sensor Gelombang Mikro

Pada penelitian ini, sensor gelombang mikro dirancang menggunakan perangkat lunak HFSS 15.0 untuk mendapatkan desain sensor dengan nilai *Frequency Detection Resolution* (FDR), rata-rata akurasi, dan *Normalized Sensitivity* (NS) yang optimal. Permitivitas dari *Sample Under Test* (SUT) adalah 1-10. Pada **tabel 2** menunjukan target performansi yang menjadi spesifikasi sensor gelombang mikro.

Parameter	Target
Fr	$0.5-2 \mathrm{~GHz}$
S ₂₁	< -10 dB
FDR	< 0.04
Rata-rata Akurasi	> 95%
NS	> 0.1%

 Tabel 2. Spesifikasi Sensor Gelombang Mikro

Pada **tabel 2** menunjukan target untuk spesifikasi sensor gelombang mikro yang akan dirancang beroperasi pada rentang frekuensi resonansi 0.5 - 2 GHz dan parameter S₂₁ bernilai kurang dari -10 dB. Parameter performansi sensor gelombang mikro yaitu FDR, rata-rata akurasi, dan NS masing-masing bernilai kurang dari 0.04, lebih dari 95%, dan lebih dari 0.1%.

7.3 Alat dan Bahan

Secara umum peralatan yang digunakan pada penelitian ini sebagai berikut:

1. Laptop

Laptop digunakan untuk melakukan proses perancangan dan simulasi pada perangkat lunak HFSS 15.0 yang sudah terinstal. Laptop yang digunakan pada penelitian adalah laptop ASUS Vivobook S14 S430.

Gambar 4. Laptop

Spesifikasi	:
Operating System	: Windows 11 Home Single Language 64-bit
Processor	: Intel [®] Core [™] i5-8265U processor
Graphics	: NVIDIA [®] GeForce [®] MX150
Memory	: 8GB 2400MHz DDR4
Storage	: HDD 1TB + SSD 512G PCIe

Interfaces : $1 \ge 1 \ge 7$ Type-CTM USB 3.1 Gen 1 1 ≥ 7 Type-A USB 3.1 Gen 1 2 ≥ 7 USB 2.0 1 ≥ 7 HDMI 1 ≥ 7 Combo audio jack 1 ≥ 7 MicroSD card read

2. Perangkat Lunak HFSS

ANSYS *High-Frequency Structure Simulator* (HFSS) merupakan sebuah perangkat lunak yang dapat membantu dalam proses merancang sensor gelombang mikro, serta dapat membantu dalam mensimulasikan dan menganalisis gelombang elektromagnetik yang dihasilkan oleh resonator pada sensor gelombang mikro yang dirancang. Pada penelitian ini versi dari perangkat lunak HFSS yang digunakan adalah HFSS 15.0.

3. Vector Network Analyzer (VNA)

VNA adalah sebuah alat ukur yang digunakan untuk mengukur respon sensor gelombang mikro terhadap SUT yang diletakan di atas *sensing area* pada resonator. Parameter S_{21} yang dihasilkan menunjukkan pergeseran frekuensi resonansi akibat adanya SUT. Hasil pengukuran ini digunakan untuk membandingkan kinerja sensor gelombang mikro yang telah difabrikasi dengan hasil simulasi menggunakan perangkat lunak HFSS.

7.4 Penelitian Pendahuluan

Untuk memperoleh data awal pada penelitian ini, dilakukan penelitian pendahuluan dengan merancangan dan melakukan simulasi menggunakan perangkat lunak HFSS 15.0. langkah-langkah yang dilakukan pada penelitian pendahuluan secara berurutan sebagai berikut:

1. Menentukan Frekuensi Resonansi

Dalam tahapan awal perancangan sensor gelombang mikro berbasis *circular* SRR dan ELC frekuensi resonansi dipengaruhi oleh panjang resonator dan dapat ditentukan menggunakan persamaan (3).

 Merancang Pengembangan Model Sensor Gelombang Mikro Pada penelitian ini sensor gelombang mikro memiliki model berbasis *circular* SRR dan ELC dengan *dual port* yang dirancang melalui 3 tahap pengembangan model.

Gambar 6. Detail Dimensi Pengembangan Model Sensor Gelombang Mikro

Pada **gambar 5** merupakan tahapan dari pengembangan model sensor gelombang mikro. Pada model 1 struktur resonator pada sensor gelombang mikro terdapat celah pada lengan induktif, kemudian pada model 2 pada celah tersebut ditambahkan struktur *line-shape*, dan pada model 3 pada celah ditambahkan struktur *back-arrow*. Ukuran setiap pengembangan model berdasarkan **gambar 6** dapat dilihat pada **tabel 3** sebagai berikut:

 Tabel 3. Detail Dimensi Pengembangan Model Sensor Gelombang

M_1	kro	

Davamatar	Dimension (mm)			
Parameter	Model 1	Model 2	Model 3	
Wz	3	3	3	
Lz	10	10	10	

L1	4.5	4.5	4.5
L2	40	40	40
L3	14.5	14.5	14.5
L4	n/a	5	5
L5	n/a	n/a	4
Ws	1	1	1
Wg	1	1	1

Setelah dilakukan simulasi pada perangkat lunak HFSS maka diperoleh parameter frekuensi resonansi dari sensor gelombang mikro dan *E-Field* tertinggi yang akan digunakan sebagai *sensing area*.

Gambar 7. Frekuensi Resonansi Pengembangan Model Sensor Gelombang Mikro

Pada **gambar 7** menunjukkan frekuensi resonansi pada setiap tahap pengembangan model. Pada model 1 frekuensi resonansi berada pada frekuensi 1.09 GHz, pada model 2 setelah resonator ditambahkan struktur *line-shape* frekuensi resonansi bergeser pada frekuensi 1.02 GHz, dan pada model 3 setelah resonator ditambahkan struktur *back-arrow* frekuensi resonansi bergeser pada frekuensi 1 GHz. Pergeseran frekuensi resonansi pada saat struktur resonator ditambahkan menunjukkan respon sensor akan menuju frekuensi yang lebih kecil pada saat area tersebut ditambahkan objek yang berbeda dari kondisi sebelumnya.

Gambar 8. *E-Field* Pengembangan Model Sensor Gelombang Mikro Hal tersebut divalidasi pada gambar 8 yang menunjukkan bahwa area yang ditambah struktur merupakan bagian resonator yang memiliki *E-Field* tertinggi sehingga dapat dijadikan sebagai *sensing area*.

 Analisis Performa Pengembangan Model Sensor Gelombang Mikro Untuk mengetahui performa dari masing-masing pengembangan model maka akan dilakukan simulasi dengan meletakan SUT pada *sensing area* sensor gelombang mikro seperti pada gambar 9.

Gambar 9. SUT Diletakan pada Sensing Area

Pada penelitian ini dilakukan simulasi menggunakan SUT berukuran 10x10x1 mm dengan permitivitas (ɛr) 1 sampai dengan 10 untuk mengetahui parameter FDR, akurasi rata-rata, dan NS.

Gambar 10. Parameter S21 Model 1 pada sensor diletakan SUT

Gambar 11. Parameter S_{21} Model 2 pada sensor diletakan SUT

Gambar 12. Parameter S₂₁ Model 1 pada sensor diletakan SUT Pada **gambar 10** sampai dengan **gambar 12** merupakan hasil simulasi menggunakan perangkat lunak HFSS. Grafik S₂₁ menunjukkan respon sensor gelombang mikro terhadap SUT yang diletakan di atasnya. Pada model 1 pada saat $\varepsilon r = 1$ frekuensi resonansi berada pada 1.1 GHz hingga $\varepsilon r = 10$ frekuensi resonansi berada pada 1.01 GHz, Pada model 2 pada saat $\varepsilon r = 1$ frekuensi resonansi berada pada 1.03 GHz hingga $\varepsilon r = 10$ frekuensi resonansi berada pada 0.88 GHz, dan Pada model 3 pada saat $\varepsilon r = 1$ frekuensi resonansi berada pada 1 GHz hingga $\varepsilon r = 10$ frekuensi resonansi berada pada 0.81 GHz. Sehingga dari hasil simulasi diperoleh grafik korelasi antara frekuensi resonansi dan εr .

Gambar 13. Grafik Korelasi Fr dan Er Model 1

Gambar 14. Grafik Korelasi Fr dan Er Model 2

Gambar 15. Grafik Korelasi Fr dan Er Model 3

Berdasarkan grafik korelasi frekuensi resonansi dan dan er pada gambar
13 sampai dengan gambar 15 maka dapat diketahui selisih antara er Universitas Trisakti | 23 referensi dan ɛr yang dikalkulasi menggunakan persamaan polinomial yang menunjukkan akurasi pada pengambangan model sensor gelombang mikro. Kemudian dengan menggunakan persamaan 4 dan 5 dapat diketahui nilai FDR dan NS. Pada **tabel 4** merupakan tabel rekapitulasi performa pengembangan model sensor gelombang mikro.

 Tabel 4. Rekapitulasi Performa Pengembangan Model Sensor

Development Models	FDR	Average Accuracy	Normalized Sensitivity
Model 1	0.010	100%	0.101%
Model 2	0.019	97.75%	0.180%
Model 3	0.016	95.46%	0.235%

Gelombang Mikro

Pada **tabel 4** menunjukkan bahwa terjadi peningkatan pada nilai NS yang semula pada model 1 bernilai 0.101% menjadi 0.235% pada model 3. Namun kenaikan nilai NS disertai dengan penurunan nilai rata-rata akurasi yang semula pada model 1 bernilai 100% menjadi 95.46% pada model 3. sehingga akan dilakukan iterasi pada ukuran *sensing area* resonator model 3 untuk meningkatkan rata-rata akurasi pada sensor gelombang mikro.

4. Iterasi Ukuran Struktur Resonator

Iterasi dilakuakan pada pengembangan model ketiga pada ukuran struktur resonator dilakukan pada bentuk *back-arrow* yang merupakan *sensing area* pada sensor gelombang mikro.

Gambar 16. Detail Dimensi Iterasi Sensor Gelombang Mikro Universitas Trisakti | 24

Ukuran setiap tahapan iterasi dimensi struktur resonator berdasarkan **gambar 16** dapat dilihat pada **tabel 5** sebagai berikut:

	Dimension (mm)					
Parameter	Model 3	Model 3 Iteration 1	Model 3 Iteration 2	Model 3 Iteration 3		
Wz	3	3	3	3		
Lz	10	10	10	10		
L1	4.5	4.5	4.5	4.5		
L2	40	40	40	40		
L3	14.5	14.5	14.5	14.5		
L4	5	6	7.5	10		
L5	4	5	6.5	9		
Ws	1	1	1	1		
Wg	1	1	1	1		

 Tabel 5. Detail Dimensi Iterasi Sensor Gelombang Mikro

Setelah dilakukan simulasi menggunakan perangkat lunak HFSS terhadap ukuran resonator pada sensor gelombang mikro yang sudah diiterasi maka diperoleh parameter frekuensi resonansi dan *E-Field* tertinggi yang akan digunakan sebagai *sensing area*.

Gambar 17. Frekuensi Resonansi Iterasi Sensor Gelombang Mikro Universitas Trisakti | 25

Pada **gambar 17** menunjukkan pergeseran frekuensi resonansi pada saat dilakukan iterasi pada ukuran *sensing area* sensor gelombang mikro. Pada kondisi awal dari pengembangan model 3 frekuensi resonansi berada pada 1 GHz, pada iterasi 1 0.96 GHz, iterasi 2 0.88 GHz, dan pada iterasi 3 0.82 GHz.

Gambar 18. E-Field Iterasi Sensor Gelombang Mikro

Pada **gambar 18** menunjukkan bahwa bagian resonator yang menjadi *sensing area* tidak berubah setelah dilakukan iterasi pada ukurannya.

5. Analisis Performa Iterasi Sensor Gelombang Mikro

Untuk mengetahui performa dari setiap tahapan itersai model akan dilakukan simulasi dengan meletakan SUT pada *sensing area* sensor gelombang mikro untuk mengetahui parameter FDR, akurasi rata-rata, dan NS.

Gambar 19. Parameter S₂₁ Iterasi 1 pada sensor diletakan SUT

Gambar 20. Parameter S₂₁ Iterasi 2 pada sensor diletakan SUT

Gambar 21. Parameter S₂₁ Iterasi 3 pada sensor diletakan SUT Pada **gambar 19** sampai dengan **gambar 21** merupakan hasil Grafik S₂₁ dari simulasi perangkat lunak HFSS yang menunjukkan respon sensor gelombang mikro setelah diiterasi terhadap SUT yang diletakan di atasnya. pada iterasi 1 pada saat $\varepsilon r = 1$ frekuensi resonansi berada pada 0.97 GHz hingga $\varepsilon r = 10$ frekuensi resonansi berada pada 0.82 GHz, pada iterasi 2 pada saat $\varepsilon r = 1$ frekuensi resonansi berada pada 0.93 GHz hingga $\varepsilon r = 10$ frekuensi resonansi berada pada 0.78 GHz, dan pada iterasi 3 pada saat εr = 1 frekuensi resonansi berada pada 0.82 GHz hingga $\varepsilon r = 10$ frekuensi

resonansi berada pada 0.66 GHz. Sehingga dari hasil simulasi diperoleh grafik korelasi antara frekuensi resonansi dan ɛr.

Gambar 22. Grafik Korelasi Fr dan Er Iterasi 1

Universitas Trisakti | 28
Berdasarkan grafik korelasi frekuensi resonansi dan dan er pada **gambar** 22 sampai dengan **gambar** 24 maka dapat diketahui selisih antara er referensi dan er yang dikalkulasi menggunakan persamaan polinomial yang menunjukkan akurasi pada iterasi sensor gelombang mikro. Kemudian dengan menggunakan persamaan 4 dan 5 dapat diketahui nilai FDR dan NS. Pada **tabel 6** merupakan tabel rekapitulasi performa iterasi sensor gelombang mikro

Development Models	FDR	Average Accuracy	Normalized Sensitivity		
Model 3	0.016	95.46%	0.235%		
Model 3 Iteration 1	0.019	97.78%	0.191%		
Model 3 Iteration 2	0.021	95.65%	0.199%		
Model 3 Iteration 3	0.022	97.59%	0.241%		

Tabel 6. Rekapitulasi Performa Iterasi Sensor Gelombang Mikro

Pada **tabel 6** menunjukkan kenaikan pada nilai rata-rata akurasi dan NS yang semula pada pengembangan model 3 bernilai 95.46% dan 0.235% menjadi 97.59% dan 0.241% pada iterasi 3. Sehigga diperoleh desai resonator sensor gelombang mikro yang paling optimal adalah model 3 iterasi 3.

6. Iterasi Ukuran SUT

Iterasi pada ukuran SUT dilakukan untuk mengetahui dimensi SUT yang paling optimal jika diletakan di atas *sensing area* sensor gelombang mikro.

Gambar 25. Detail Dimensi Iterasi SUT Universitas Trisakti | 29

Ukuran setiap tahapan iterasi berdasarkan **gambar 25** dapat dilihat pada **tabel 7** sebagai berikut:

Parameter	Dimension (mm)						
	SUT	SUT Iteration 1	SUT Iteration 2	SUT Iteration 3			
L6	10	15	20	25			
L7	10	10	10	10			

Tabel 7. Detail Dimensi Iterasi SUT

Iterasi dilakukan sebanyak 3 kali iterasi pada dimensi L6 dari kondisi awal sebesar 10 mm menjadi 15 mm pada iterasi 1, 20 mm pada iterasi 2, dan 25 mm pada iterasi 3. Dengan dimensi L7 = 10 mm disetiap tahapan iterasi.

7. Analisis Iterasi Ukuran SUT

Untuk mengetahui dimensi SUT yang paling optimal maka perlu diketahui perbandingan parameter FDR, akurasi rata-rata, dan NS pada setiap proses iterasi.

Gambar 26. Parameter S₂₁ SUT Iterasi 1

Gambar 27. Parameter S₂₁ SUT Iterasi 2

Pada **gambar 26** sampai dengan **gambar 28** merupakan hasil Grafik S₂₁ dari simulasi perangkat lunak HFSS yang menunjukkan respon sensor gelombang mikro setelah terhadap SUT yang diiterasi dimensinya. Pada iterasi 1 pada saat $\varepsilon r = 1$ frekuensi resonansi berada pada 0.84 GHz hingga $\varepsilon r = 10$ frekuensi resonansi berada pada 0.68 GHz, pada iterasi 2 pada saat $\varepsilon r = 1$ frekuensi resonansi berada pada 0.84 GHz hingga $\varepsilon r = 10$ frekuensi resonansi berada pada 0.84 GHz hingga $\varepsilon r = 10$ frekuensi resonansi berada pada 0.84 GHz hingga $\varepsilon r = 10$ frekuensi resonansi berada pada 0.69 GHz, dan pada iterasi 3 pada saat $\varepsilon r = 1$ frekuensi resonansi berada pada 0.84 GHz hingga $\varepsilon r = 10$ frekuensi

resonansi berada pada 0.68 GHz. Sehingga dari hasil simulasi diperoleh grafik korelasi antara frekuensi resonansi dan ɛr.

Gambar 29. Grafik Korelasi Fr dan er Iterasi 1 SUT

Gambar 30. Grafik Korelasi Fr dan Er Iterasi 2 SUT

Gambar 31. Grafik Korelasi Fr dan εr Iterasi 3 SUT Universitas Trisakti | 32

Berdasarkan grafik korelasi frekuensi resonansi dan ɛr pada **gambar 29** sampai dengan **gambar 31** maka dapat diketahui selisih antara ɛr referensi dan ɛr yang dikalkulasi menggunakan persamaan polinomial yang menunjukkan akurasi sensor gelombang mikro terhadap SUT yang diiterasi. Kemudian dengan menggunakan persamaan 4 dan 5 dapat diketahui nilai FDR dan NS. Pada **tabel 8** merupakan tabel rekapitulasi performa sensor gelombang mikro terhadap iterasi SUT.

Tabel 8. Rekapitulasi Performa Sensor Gelombang Mikro Terhadap

Sample	FDR	Average Accuracy	Normalized Sensitivity		
SUT	0.022	97.59%	0.241%		
SUT Iteration 1	0.022	97.98%	0.235%		
SUT Iteration 2	0.022	97.51%	0.220%		
SUT Iteration 3	0.022	97.26%	0.235%		

Iterasi SUT

Pada **tabel 8** menunjukkan kenaikan pada nilai rata-rata akurasi dan NS yang semula pada model 3 iterasi 3 bernilai 97.59% dan 0.241% menjadi 97.98% dan 0.235% pada iterasi 1. Sehigga diperoleh dimensi SUT yang paling optimal adalah SUT iterasi 1 dengan dimensi 10x15 mm.

8. Iterasi Ketebalan SUT

Untuk mengetahui batas ketebalan SUT maka dilakukan iterasi terhadap ukuran ketebalan SUT dengan $\varepsilon r = 1$. Pada **gambar 32** menunjukan posisi SUT pada saat diletakan diatas sensor gelombang mikro detail dimensi dilambangkan dengan T.

Gambar 32. Detail Dimensi Iterasi Ketebalan SUT

Ukuran setiap tahapan iterasi ketebalan SUT berdasarkan gambar 31 dapat dilihat pada **tabel 9** sebagai berikut:

Tabel 9. Detail Dimensi Iterasi Ketebalan SUT

Parameter		Dimension (mm)								
i arameter	SUT	SUT Iteration 1	SUT Iteration 2	SUT Iteration 3	SUT Iteration 4	SUT Iteration 5	SUT Iteration 6	SUT Iteration 7	SUT Iteration 8	SUT Iteration 9
Т	1	1.1	1.2	13	1.4	1.5	1.6	1.7	1.8	1.9

Iterasi dilakukan sebanyak 9 kali iterasi pada ketebalan T dari kondisi awal sebesar 1 mm hingga iterasi 9 menjadi 1.9 mm.

9. Analisis Iterasi Ketebalan SUT

Melalui simulasi perangkat lunak HFSS maka di ketahui penguh perbedaan ketebalan SUT terhadap frekuensi resonansi.

Pada **gambar 33** menunjukkan pada kondisi awal pada saat T = 1 mm frekuensi resonansi berada pada frekuensi 0.84 GHz dan memberi respon pada saat ketebalan SUT diiterasi. Sensor gelombang mikro berhenti memberikan respon pada saat T = 1.9 mm yang menunjukkan batas ketebalan SUT yang dapat dideteksi oleh sensor gelombang mikro berukuran T = 1.8 mm.

10. Iterasi nilai *Dielectric* tan δ pada SUT

Untuk mengetahui respon sensor gelombang mikro terhadap perbedaan *Dielectric* tan δ pada SUT maka dilakuan iterasi dengan mengiterasi parameter tan δ .

Gambar 34. Respon Frekuensi Resonansi terhadap tan δ Pada gambar 34 merupakan grafik respon frekuensi resonansi terhadap tan δ , setiap kenaikan nilai tan δ pada SUT menyebabkan koefesien transmisi bergerak kearah yang lebih rendah. Secara detail dapat dilihat pada **tabel 10**.

Tabel 10. Respon Frekuensi Resonansi terhadap tan δ

tan δ	S ₂₁ (dB)
0	-16.597
0.02	-16.059
0.04	-15.562
0.06	-15.071
0.08	-14.646
0.1	-14.251

Dari keseluruhan hasil simulasi menggunakan perangkat lunak HFSS 15.0 menunjukan bahwa perancangan sensor gelombang sudah berhasil untuk mengakarakterisasi material padat 1-10 dengan performansi FDR, rata-rata akurasi, dan NS sebesar 0.022, 97.98%, dan 0.235%. tahapan selanjutnya adalah memfabrikasi sensor gelombang mikro dan melakukan validasi di laboratorium.

No	Kegiatan	Nov 2024	Des 2024	Jan 2025	Feb 2025	Mar 2025	Apr 2025	Mei 2025	Jun 2025
	Penyusunan Propos								
	a. Menyusun								
	Proposal								
1	b. Seminar								
	Proposal								
	c. Perbaikan								
	Proposal								
	Pelaksanaan Tesis								_
	a. Desain								
	Percobaan								
	b. Percobaan/Hasil								
	c. Pembahasan								
	Hasil								
2	d. Penulisan								
	Jurnal dan								
	Publikasi								
	e. Penulisan Draft								
	Tesis								
	f. Bimbingan								
	Tesis								
	Sidang Tesis								
	a. Persiapan								
	Administrasi								
	b. Penyerahan								
3	Draft Tesis								
	kepada Tim								
	Penguji								
	c. Sidang Tesis								
	d. Perbaikan,								
	Evaluasi Akhir,								
	dan Penyerahan								
	Tesis								

8. Rencana Pelaksanaan Kegiatan

9. Daftar Referensi

- N. Leibl, K. Haupt, C. Gonzato, and L. Duma, "Molecularly imprinted polymers for chemical sensing: A tutorial review," 2021, *Multidisciplinary Digital Publishing Institute (MDPI)*. doi: 10.3390/chemosensors9060123.
- H. M. Fahmy, H. I. Helmy, F. E. Ali, N. E. Motei, and M. S. Fathy,
 "Industrial Applications of Sensors," in *Handbook of Nanosensors*,
 Springer Nature Switzerland, 2024, pp. 1–34. doi: 10.1007/978-3-031-16338-8_55-1.
- [3] S. Sharma, A. Verma, S. M. Rangappa, S. Siengchin, and S. Ogata,
 "Recent progressive developments in conductive-fillers based polymer nanocomposites (CFPNC's) and conducting polymeric nanocomposites (CPNC's) for multifaceted sensing applications," Sep. 01, 2023, *Elsevier Editora Ltda*. doi: 10.1016/j.jmrt.2023.08.300.
- [4] M. Rihan, A. Zappone, S. Buzzi, G. Fodor, and M. Debbah, "Passive Versus Active Reconfigurable Intelligent Surfaces for Integrated Sensing and Communication: Challenges and Opportunities," *IEEE Netw*, vol. 38, no. 3, pp. 218–226, May 2024, doi: 10.1109/MNET.2023.3321542.
- [5] A. A. Al-Behadili, I. A. Mocanu, N. Codreanu, and M. Pantazica,
 "Modified split ring resonators sensor for accurate complex permittivity measurements of solid dielectrics," *Sensors (Switzerland)*, vol. 20, no. 23, pp. 1–18, Dec. 2020, doi: 10.3390/s20236855.
- [6] J. Yeo and J. I. Lee, "High-sensitivity microwave sensor based on an interdigital-capacitor-shaped defected ground structure for permittivity characterization," *Sensors (Switzerland)*, vol. 19, no. 3, Feb. 2019, doi: 10.3390/s19030498.
- [7] C. Wang *et al.*, "High-Accuracy Complex Permittivity Characterization of Solid Materials Using Parallel Interdigital Capacitor-Based Planar Microwave Sensor," *IEEE Sens J*, vol. 21, no. 5, pp. 6083–6093, Mar. 2021, doi: 10.1109/JSEN.2020.3041014.

- [8] M. Saadat-Safa, V. Nayyeri, M. Khanjarian, M. Soleimani, and O. M. Ramahi, "A CSRR-Based Sensor for Full Characterization of Magneto-Dielectric Materials," *IEEE Trans Microw Theory Tech*, vol. 67, no. 2, pp. 806–814, Feb. 2019, doi: 10.1109/TMTT.2018.2882826.
- [9] Z. Guo, Y. Wang, S. Ke, X. Su, J. Ren, and H. Chen, "1D Photonic Topological Insulators Composed of Split Ring Resonators: A Mini Review," *Advanced Physics Research*, vol. 3, no. 6, Jun. 2024, doi: 10.1002/apxr.202300125.
- [10] Y. Gong, G. Liu, S. Jiang, J. Yu, and T. Qi, "A DGS-CPW Microwave Sensor Loaded With SRR for Solid Material Measurement," *IEEE Trans Instrum Meas*, vol. 73, pp. 1–8, 2024, doi: 10.1109/TIM.2024.3446651.
- S. Alam *et al.*, "Dual Functional Liquid Displacement and Angular Detection Based on Band Stop Response Microwave Sensor," *IEEE Access*, vol. 12, pp. 94861–94869, 2024, doi: 10.1109/ACCESS.2024.3425159.
- C. H. Joseph, D. Mencarelli, L. Pierantoni, P. Russo, and L. Zappelli,
 "Efficient Equivalent Circuits Model for Electric-LC Resonators in Periodic and Closed Waveguides," *IEEE Access*, vol. 12, pp. 92281–92294, 2024, doi: 10.1109/ACCESS.2024.3422486.
- [13] J. Muñoz-Enano, P. Vélez, M. Gil, and F. Martín, "Planar microwave resonant sensors: A review and recent developments," *Applied Sciences* (*Switzerland*), vol. 10, no. 7, Apr. 2020, doi: 10.3390/app10072615.
- H. N. Morales-Lovera, J. L. Olvera-Cervantes, A. E. Perez-Ramos, A. Corona-Chavez, and C. E. Saavedra, "Microstrip sensor and methodology for the determination of complex anisotropic permittivity using perturbation techniques," *Sci Rep*, vol. 12, no. 1, Dec. 2022, doi: 10.1038/s41598-022-06259-8.
- [15] R. Gao et al., Epitaxial titanium nitride microwave resonators: Structural, chemical, electrical, and microwave properties. 2021. doi: 10.48550/arXiv.2111.04227.

- [16] D. Mondal, N. Tiwari, and M. J. Akhtar, *Microwave Assisted Non-Invasive Microfluidic Biosensor for Monitoring Glucose Concentration*. 2018. doi: 10.1109/ICSENS.2018.8589919.
- [17] X. Han *et al.*, "Microfluidic Microwave Sensor Loaded with Star-Slotted Patch for Edible Oil Quality Inspection," *Sensors*, vol. 22, no. 17, Sep. 2022, doi: 10.3390/s22176410.
- [18] M. Z. B. Chowdhury, M. T. Islam, A. Alzamil, M. S. Soliman, and M. Samsuzzaman, "A tunable star-shaped highly sensitive microwave sensor for solid and liquid sensing," *Alexandria Engineering Journal*, vol. 86, pp. 644–662, Jan. 2024, doi: 10.1016/j.aej.2023.12.001.
- [19] S. Alam, Z. Zakaria, I. Surjati, N. A. Shairi, M. Alaydrus, and T. Firmansyah, "Dual-Band Independent Permittivity Sensor Using Single-Port with a Pair of U-Shaped Structures for Solid Material Detection," *IEEE Sens J*, vol. 22, no. 16, pp. 16111–16119, Aug. 2022, doi: 10.1109/JSEN.2022.3191345.
- [20] R. A. Alahnomi, Z. Zakaria, E. Ruslan, S. R. Ab Rashid, and A. A. Mohd Bahar, "High-Q sensor based on symmetrical split ring resonator with spurlines for solids material detection," *IEEE Sens J*, vol. 17, no. 9, pp. 2766–2775, May 2017, doi: 10.1109/JSEN.2017.2682266.
- [21] A. J. A. Al-Gburi, N. A. Rahman, Z. Zakaria, and M. Palandoken,
 "Detection of Semi-Solid Materials Utilizing Triple-Rings CSRR Microwave Sensor," *Sensors*, vol. 23, no. 6, Mar. 2023, doi: 10.3390/s23063058.
- [22] S. Agarwal and M. C. Garg, "Design of an Accurate, Planar, Resonant Microwave Sensor for Testing a Wide Range of Liquid Samples," *Electronics (Switzerland)*, vol. 13, no. 22, Nov. 2024, doi: 10.3390/electronics13224510.
- [23] A. Ebrahimi, J. Scott, and K. Ghorbani, "Differential sensors using microstrip lines loaded with two split-ring resonators," *IEEE Sens J*, vol. 18, no. 14, pp. 5786–5793, Jul. 2018, doi: 10.1109/JSEN.2018.2840691. Universitas Trisakti | 40

- [24] N. A. Rahman *et al.*, "High quality factor using nested complementary split ring resonator for dielectric properties of solids sample," *Appl Comput Electromagn Soc J*, vol. 35, no. 10, pp. 1222–1227, Oct. 2020, doi: 10.47037/2020.ACES.J.351016.
- [25] I. Royo, R. Fernández-García, and I. Gil, "Microwave Resonators for Wearable Sensors Design: A Systematic Review," Nov. 01, 2023, *Multidisciplinary Digital Publishing Institute (MDPI)*. doi: 10.3390/s23229103.
- [26] Z. Shaterian and M. Mrozowski, "Multifunctional Bandpass Filter/Displacement Sensor Component," *IEEE Access*, vol. 11, pp. 27012– 27019, 2023, doi: 10.1109/ACCESS.2023.3258545.
- [27] T. H. Lee, J. J. Laurin, and K. Wu, "Reconfigurable Filter for Bandpass-to-Absorptive Bandstop Responses," *IEEE Access*, vol. 8, pp. 6484–6495, 2020, doi: 10.1109/ACCESS.2019.2963710.
- [28] S. Y. Jang and J. R. Yang, "Double Split-Ring Resonator for Dielectric Constant Measurement of Solids and Liquids," *Journal of Electromagnetic Engineering and Science*, vol. 22, no. 2, pp. 122–128, 2022, doi: 10.26866/jees.2022.2.r.68.
- [29] A. J. A. Al-Gburi, Z. Zakaria, N. Abd Rahman, S. Alam, and M. A. M. Said, "A Compact and Low-Profile Curve-Feed Complementary Split-Ring Resonator Microwave Sensor for Solid Material Detection," Feb. 01, 2023, *MDPI*. doi: 10.3390/mi14020384.
- [30] S. Alam *et al.*, "UHF-Band Solid Sensor Based on Tweaking Electric Field Coupled Resonator for Material Characterization," *Progress In Electromagnetics Research M*, vol. 126, pp. 11–18, 2024, doi: 10.2528/PIERM24020201.