SUPPLEMENTARY MATERIALS

Exploring Genetic Susceptibility to Air Pollution and Its Implication for Disease Risk and Precision Health

Hari Krismanuel¹

¹ Faculty of Medicine, Universitas Trisakti, West Jakarta, DKI Jakarta, Indonesia.

* Correspondence: Hari Krismanuel hari krismanuel@trisakti.ac.id

Content

 Table S1. Characteristics of Studies Examining the Association Between Air Pollution and Health Outcomes.

Table S2. Summary of Key Findings, Conclusions, and Limitations of Included Studies.

 Table S3. Summary of Gene-Environment Interactions for Environmental Exposure and Health

 Outcomes.

Table S1: Characteristics of Studies Examining the Association Between Air Pollution and Health Outcomes

Author & year	Location	Study Design	Population and Sample size	Exposure/ Variables	Health Outcome	Age range
Gruzieva et al.,	European and	Meta-analysis of	Newborns, children aged 4	NO2 exposure at residential	DNA methylation in mitochon-	aged 4 and 8
2016	North American	cohort studies	and 8 from European and	addresses during pregnancy	dria-related genes; methyla-	
			North American cohorts		tion and expression of anti-	
			(n=1,508 newborns, n=733		oxidant and anti-inflam-	
			at age 4, n=786 at age 8)		matory genes (CAT, TPO)	
Huang et al.,	UK Biobank/ UK	Case control study	455,974 participants in UK	Concentrations of PM (PM2.5,	Incidence of lung cancer	40 - 69 years
2021		(using UK Biobank	Biobank (53% women) with	PMcoarse, PM10), NO2, and		
		data)	no previous history of	NOx estimated using land-use		
			cancer	regression models		
Ma et al	LIK Biohank/22	Cohort study (using	119 163 participants from	Long-term exposure to PM2 5	Incidence of Abdominal Aortic	37 - 73 vears
2024		LIK Biobank data)	the LIK Biobank	PM10_NO2_and NOx		57 - 75 years
2024	the LIK	ok biobank dataj		measured over time		
Li et al.,	UK Biobank/ 22	Prospective cohort	354,897 participants aged	Annual average concentrations	Incidence of Major Depressive	37 - 73 years
2023	centers in urban	study (using UK	37-73 years from the	of PM2.5 PM10, NO2, and NOx	Disorder (MDD)	
	areas of England,	Biobank data)	UK Biobank	estimated using a Land Use		
	Wales, and			Regression model		
	Scotland					
Fu et al.,	UK Biobank (approxi-	Prospective cohort	407,470 participants were	Long-term exposure to air pollutants,	The incidence of coronary	40 to 69 years
2023	mately 487,507	study.	investigated the relationship	including:	artery disease (CAD).	at recruitment
	participants recruited		Of PM, genetic factors, and	(PM2.5), (PM10), Nitrogen dioxide		(baseline).
	across the UK .		CAD, and 438,736 in the NO	(NO2), Nitrogen oxides (NOx).		
	at baseline from 2006		group. These participants	Genetic Variable: Polygenic risk score		

	to 2010.		were free of CAD at baseline (the start of the study).	(PRS) for CAD, representing an indi- vidual's genetic susceptibility to the disease.		
Ma et al., 2024	UK Biobank/ UK	Prospective cohort study.	The analytical sample consisted of 452,196 participants from the UK Biobank.	The study examined long-term exposure to: PM2.5, PM10, Nitrogen dioxide (NO2), Nitrogen oxides (NOx)	The primary health outcome was the incidence of stroke, further categorized into ischemic and hemorrhagic stroke.	30 to 73 years at baseline (recruitment).
Liu et al., 2024	UK Biobank/ UK	Prospective cohort study.	Large sample size (485,288 participants) from the UK Biobank.	Long-term exposure to air pollutants, including: Nitrogen dioxide (NO2), Nitrogen oxides (NOx), Particulate matter with a diameter of 2.5 micrometers or less (PM2.5), Particulate matter with a diameter of 10 micrometers or less (PM10)	The primary health outcome of interest was the incidence of schizophrenia, which was identified through hospital records and self-reported diagnoses in the UK Biobank.	37 to 73 years at the time of recruitment (baseline).
Huang et al., 2024	Qingdao, China.	Prospective cohort study.	Large sample size of over 312,000 participants.	Long-term exposure to air pollutants, particularly: - Fine particulate matter (PM2.5) - Nitrogen dioxide (NO2) - Nitrogen oxides (NOx) Genetic Variable: Polygenic risk score (PRS) for PD	The primary health outcome of interest was Parkinson's disease (PD) diagnosed by neurologists.	Average age of the partici- pants was 57 years old
Wang et al., 2022	UK Biobank/ UK	Prospective cohort study.	approximately 452,762 partici- pants across the UK. (UK Biobank)	Long-term exposure to air pollution, particularly PM2.5. Genetic Variable: Not directly mea- sured, but genetic susceptibility for COPD was estimated based on the	The primary health outcome of interest was chronic obstructive pulmonary disease (COPD).	37 to 73 years

				participants' region of residence (a proxy). Lifestyle Variables: Smoking status, alcohol consumption, diet, and physical activity level.		
Rhee et al., 2024	UK Biobank, which genetically unrelated White British partici- pants without CVD.	Prospective cohort study.	A total of 249 082 participants	Long-term exposure to air pollutants, primarily PM2.5. Other pollutants were likely considered, but PM2.5 was the focus. Genetic Variable: Polygenic risk score (GRS) for CVD, representing an individual's genetic predisposition to the disease.	The primary health outcome was the incidence of cardio- vascular diseases (CVD). This included various conditions such as coronary heart disease, stroke, and heart failure.	Aged 40 to 69 Years (2006 - 2010).
Li et al., 2022	United Kingdom (UK Biobank)	Prospective cohort study.	41,149 participants recruited from the project of Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) were included.	Long-term exposure to fine particu- late matter (PM2.5). Genetic Variables: Genetic risk scores for coronary artery disease. Residential PM2.5 concentrations.	The primary health outcome investigated was coronary artery disease (CAD), focusing on how long-term exposure to fine particulate matter (PM2.5) and genetic predis- position influence the risk of developing CAD.	40 to 69 years at recruitment.
Chen et al., 2024	The data primarily comes from the UK Biobank	Prospective cohort study.	The observational analyses involved a large sample size of 453,919 individuals. The genetic analyses focused on individuals of White European descent.	Air Pollution: This was the main exposure of interest. The study examined several air pollutants: Nitrogen oxides (NOx), Nitrogen dioxide (NO2) Particulate matter with a diameter	The primary health outcome studied was the incidence of ulcerative colitis (UC).	between 40 and 69 years at recruitment.

of 2.5 micrometers or less (PM2.5)

Wu et al.,	UK Biobank	Prospective cohort	The study used data from the UK	Primary Exposures:	The primary health outcome	aged between
2024	(United Kingdom)	using data from	Biobank. The sample size for the	Nitrogen dioxide (NO2), par-	was incident psoriasis, defined	40 and 69 years
		the UK Biobank.	observational analyses included	ticulate matter ≤2.5 µm (PM2.5)	as a first diagnosis of	at the time of
			over 400,000 participants.	Particulate matter ≤10 μm (PM10)	psoriasis during	recruitment
			The genetic analyses were conduc-	Other Variables:	the follow-up period	(between 2006
			ted on a subset of participants	Polygenic risk score (PRS) for	in the UK Biobank.	and 2010).
			of European ancestry.	psoriasis (measuring genetic		
				predisposition)		
Zhang et al.,	Beijing, China	Cross-sectional	522 healthy participants living in	Primary Exposure: Particulate	The primary health outcome	aged between
2024		study using data	Beijing from January 2014 to	matter ≤2.5 μm (PM2.5)	was processing speed, a	40 and 69 years
		from the UK Bio-	July 2016	Other Variables:	measure of cognitive function.	at recruitment.
		Bank.		Polygenic risk score (PRS) for		
				depression (measuring genetic		
				predisposition)		
				Processing speed (cognitive		
				outcome)		
				Resting-state functional connecti-		
				vity of the occipitoparietal network		
				and spontaneous activity in the		
				precuneus (neuroimaging mea-		
				sures)		
				Covariates: age, sex, education,		
				smoking status, body mass index,		
				and socioeconomic status		
Gao et al.,	UK Biobank	Prospective cohort	The study included 502,536	Researchers estimated participants'	Researchers assessed depres-	Age of 37–73
2023	(United Kingdom)	study.	participants from the UK Biobank,	long-term exposure to air	sion and anxiety using:	years old (base-
			recruited in 2006–2010.	pollutants:	#NAME?	line survey)
				Fine particulate matter (PM2.5)	for mental disorders.	

				Coarse particulate matter (PM10)	#NAME?	
				Nitrogen oxides (NOx)	completed by participants	
				Nitrogen dioxide (NO2)	during a follow-up survey.	
Zhang et al.,	UK (UK Biobank	Prospective cohort	Data from the UK Biobank was	Primary Exposures:	Outcome: Incident dementia	aged between
2024	participants)	study.	used. The study included 401,244	Fine particulate matter (PM2.5)		40 and 69 years
			participants.	Nitrogen dioxide (NO2)		at recruitment.
				Nitrogen oxides (NOx)		
				Joint exposure to these pollutants		
				(analyzed using a weighted quantile		
				sum (WQS) regression)		
				Genetic Susceptibility: APOE ε4 allele		
				(a genetic variant associated with		
				increased dementia risk)		

Footnote: Abbreviations: AAA, Abdominal Aortic Aneurysm; AF, Atrial Fibrillation; CAD, Coronary Artery Disease; CAT, Catalase; COPD, Chronic Obstructive Pulmonary Disease; CVD, Cardiovascular Disease; FT3, Free Triiodothyronine; FT4, Free Thyroxine; MDA, Malondialdehyde; MDD, Major Depressive Disorder; NO2, Nitrogen Dioxide; NOx, Nitrogen Oxides; PM10, Particulate Matter ≤ 10 µm; PM2.5, Particulate Matter ≤ 2.5 µm; PRS, Polygenic Risk Score; SLE, Systemic Lupus Erythematosus; TAA, Total Antioxidant Activity; TPO, Thyroid Peroxidase; TSH, Thyroid-Stimulating Hormone.

Author & year	Key Findings	Conclusion	Limitations
Gruzieva et al., 2016	Epigenome-wide significant associations between maternal NO2 exposure during pregnancy and DNA methylation in newborns for 3 CpG sites in mitochon- dria related genes (LONP1, HIBADH, SLC25A28). Association with SLC25A28	This study conducted an epigenome- wide meta-analysis to identify DNA methylation sites in newborns poten- tially associated with prenatal exposure to nitrogen dioxide (NO2), a traffic-related air pollutant. They found no statistically significant associations between NO2 exposure and DNA methylation across the entire genome.	This study was limited by potential insufficient statistical power (due to sample size), its focus on cord blood DNA methylation (which may not reflect all relevant changes), incom- plete understanding of the link be - tween DNA methylation and health, the exclusive focus on NO2 (other pollutants may have stronger effects), and the assessment being limited to newborns. Despite finding epigenome -wide significant associations at three CpG sites, no genome-wide significant associations were observed.
Huang et al., 2021	Significant associations between lung cancer risk and PM2.5, PM10, NO2, and NOx. Additive interactions between air pollutants and genetic risk; Highest risk observed in participants with combined high exposure and high genetic risk.	This study provides strong evidence that long-term exposure to air pollutants, particularly PM2.5, NO2, and NOx, significantly increases the risk of lung cancer. It demonstrates a combined effect of genetic predisposition and air pollution, with individuals at high genetic risk and high pollution exposure facing the greatest risk.	This study was limited by the difficulty in isolating individual pollutant effects, the use of a single baseline pollution measurement, the lack of occupational exposure data, simplified smoking data, the lack of oxidative damage biomarkers, and the use of multiple imputation for missing data.

Table S2: Summary of Key Findings, Conclusions, and Limitations of Included Studies

Ma et al., Long-term exposure to PM2.5, PM10,

Long-term exposure to air pollu-

As an observational study, it demonstra-

2024 NO2, and NOx associated with an tants, particularly NO2, NOx, tes association but cannot prove causaincreased AAA risk; highest risk in PM2.5, and PM10, is associated tion. The findings require confirmation in in participants with combined high with an increased risk of abdoother populations. exposure and high genetic risk. minal aortic aneurysm (AAA). This risk is compounded in AAA. Li et al., Long-term exposure to PM2.5, NO2, The study concluded that both 2023 and NOx) associated with increased genetic susceptibility and lifestyle Major Depressive Disorder (MDD) factors modify the association risk; interaction observed between between long-term air pollution air pollution exposure and genetic exposure and MDD. predisposition (PRS) to MDD. Individuals with a higher genetic confounding. risk for MDD are more vulnerable to the effects of air pollution. Fu et al., Exposure to PM2.5, PM10, NO2, and both air pollution exposure and As an observational design, it limits 2023 NOx associated with increased CAD genetic predisposition play a risk; higher genetic risk (PRS) increarole in CAD development. ses susceptibility to air pollution's However, the impact of air negative effects; additive genepollution is more pronounced environment interaction observed. for individuals with a higher genetic risk. This highlights the importance of considering both factors for preventing and managing CAD. As an observational design, it limits Ma et al., Long-term exposure to PM2.5, PM10, The study concludes that genetic 2024 NO2, and NOx, associated with incresusceptibility modifies the relacausal inference. The primarily East ased stroke risk; gene-environment tionship between air pollution Asian study population may limit Interaction observed; higher genetic exposure and stroke risk. generalizability. Residual confounding

People with a higher genetic

predisposition (PRS) increases suscep-

This study was limited by reliance on

self-reported data (potential recall bias), self-reported MDD diagnoses, the predominantly European ancestry of the study population, and potential residual

causal inference. Unmeasured confounding factors may be present.

is possible.

tibility.

risk are more vulnerable to the adverse effects of air pollution, especially regarding ischemic stroke.

Liu et al., Long-term exposure to NO2, NOx, 2024 PM2.5, and PM10 associated with Increased schizophrenia risk; significant interaction between genetic susceptibility (PRS) and air pollution; highest risk in individuals with combined high risk and high exposure.

Huang et al., 2024 No significant association between Air pollution and PD risk in general population; interaction found be tween genetic susceptibility and air pollution; higher genetic risk increases susceptibility; high genetic risk + exposure to PM2.5, NO2, and NOx associated with increased PD risk. The study concludes that both air pollution exposure and genetic predisposition play a role in the development of schizophrenia. However, the impact of air pollution is more pronounced for individuals with a higher genetic risk. This highlights the importance of considering both factors for risk assessment, prevention, and potentially developing targeted interventions for those at greatest risk.

The study suggests that air pollution might be a risk factor for PD, but its impact is limited to individuals with a preexisting genetic vulnerability. People with a high genetic risk for PD should be more aware of their environmental exposures and consider measures to reduce As an observational design, it limits causal inference. The primarily European ancestry of the study population limits generalizability. Residual con founding is possible.

As an observational design, it limits causal inference. Other factors could be influencing PD development. Specific genetic markers associated with PD risk are not specified. The study population was recruited from a single city in China, limiting generalizability.

air pollution intake.

- Wang et al., Interaction between air pollution,
 - 2022 genetic susceptibility, and lifestyle factors for COPD risk; highest risk observed in individuals with com bined high air pollution, high genetic risk, and unhealthy lifestyle.

2024

Rhee et al.,

Long-term PM2.5 exposure associated with increased CVD risk; significant interaction between genetic risk (GRS) and air pollution; combined high risk and high exposure resulted in substantially higher CVD risk.

Li et al., Long-term PM2.5 exposure associ -2022 ated with increased CAD risk; high genetic risk for CAD exacerbates PM2.5's adverse effects.

- Air pollution exposure is a risk factor for COPD, but its impact is more pronounced for individuals with a higher genetic predisposition to the disease or those with unhealthy lifestyles. This highlights the importance of considering these combined factors for COPD prevention and risk management.
- Both genetic predisposition and long-term exposure to air pollution contribute to the development of CVD. The impact of air pollution is amplified in individuals with a higher genetic risk, emphasizing the importance of considering gene-environment interactions in CVD prevention and risk management.

The findings indicate that genetic risk modifies the effect of longterm PM2.5 exposure on coronary artery disease. Individuals with higher genetic susceptibility to CAD are more

As an observational design, it limits causal inference. Other factors might influence COPD development. Reliance on self-reported lifestyle data may be prone to bias. The study population was primarily from China, limiting generalizability.

As an observational design, it limits causal inference. The study population consisted primarily of individuals of East Asian descent, limiting generalizability. Air pollution exposure assessment was based on residential address. Genetic risk assessment was based on a polygenic risk score (GRS), which may not fully represent all genetic contributions to to CVD risk.

This study was limited by its observational nature (cannot establish causality), potential residual confounding factors, and PM2.5 exposure assessment based on residential addresses.

vulnerable to the detrimental effects of PM2.5. This underscores the importance of considering both environmental and genetic factors in assessing cardiovascular disease risk.

Chen et al.,

2024

Air pollution increases UC risk by altering DNA methylation, of CXCR2 (involved in immune cell movement) and MHC class III region genes (like AGPAT1). These changes, validated

by multiple analyses, affect gene expression in colon tissue and are more pronounced in UC patients' epithelial cells, suggesting a key mechanism linking air pollution to UC development.

Wu et al.,Long-term exposure to air pollutants2024(NO2, PM2.5, PM10) is associatedwith an increased risk of psoriasis.Genetic susceptibility exacerbatesthis risk. Mendelian randomization

Genetic susceptibility exacerbates this risk. Mendelian randomization analyses suggest a potential causal role of NO2 and PM2.5 in psoriasis development. The study provides evidence for exposure and the development of ulcerative colitis (UC). This link is mediated, at least in part, by epigenetic alterations, specifically DNA methylation changes, affecting genes like CXCR2 and loci within the MHC class III region. These epigenetic changes influence gene expression in tissue and are more pronounced in UC patients. The findings highlight a potential mechanism by which environmental factors like air pollution can contribute to the pathogenesis of UC.

Long-term exposure to air pollution, particularly NO2 and PM2.5, isassociated with an increased risk of psoriasis. Genetic susceptibility to psoriasis interacts with air pollution exposure, exacerbating the risk. This suggests that air pollution may be a trigger for psoriasis in The observational nature of some analyses limits causal inference. The study population was primarily of White European descent, limiting generalizability. Residual confounding is possible. While Mendelian randomization strengthens causal inference, it relies on certain assumptions. The study focused primarily on UC, with limited analysis of Crohn's disease (CD). The colocalization analysis for cg16689962 could not be performed due to a limited number of mQTLs.

The study population was predominantly White British, limiting generalizability to other ethnicities. Psoriasis diagnosis was based on self-report or hospital records, which may introduce misclassification. Residual confounding factor is possible. MR analyses rely on assumptions (e.g., no pleiotropy). The study did not inves -

genetically predisposed individuals.

Zhang et al.,
2024Higher PM2.5 exposure was associa-
ted with reduced processing speed
and precuneus activity (a brain regi-
on) in individuals with a high genetic
risk for depression.

Gao et al., Higher air pollution levels were 2023 associated with increased risk of depression and anxiety, both at baseline and during follow-up. This effect may be stronger in individuals with higher genetic risk for depression. The study suggests that air pollution may be associated with an increased likelihood of cognitive impairment (specifically reduced processing speed in individuals who are gene tically predisposed to depression. This effect may be mediated by alterations in the resting-state function of the occipitoparietal network and the precuneus. These findings highlight the importance of consi dering gene-environment interactions in understanding the impact of air pollution on brain health.

This study suggests a link between long-term air pollution exposure and an increased risk of developing depression and anxiety. Genetic predisposition may play a role in how air pollution affects mental health. gate the effects of specific types of psoriasis. Air pollution exposure was estimated based on residential address.

As a cross-sectional study, it cannot establish causality. It shows associations, but it doesn't prove that air pollution causes reduced processing speed or that the observed brain changes are a direct result of air pollution.

The study population is predominantly White British, limiting generalizability. Air pollution exposure was estimated based on residential address, which may not perfectly reflect individual exposure levels.

Other potential confounders may not have been fully accounted for.

The study relies on estimations of air pollution exposure based on residential address, which may not reflect individual variations.

The study design can't definitively prove that air pollution causes depression or anxiety.

The focus on genetic predisposition was general, not looking at specific genes. The study population is predominantly White British, limiting generalizability to Zhang et al., 2024 Combined exposure to air pollutants (PM2.5, NO2, NOx) increased dementia risk, especially in individuals carrying the APOE ε4 allele (a genetic risk rfactor for dementia). Joint exposure to multiple air pollutants increases the risk of dementia. Genetic susceptibility, particularly carrying the APOE ɛ4 allele, enhances the detrimental effects of air pollution on dementia risk. This highlights a geneenvironment interaction.

Exposure to air pollution was estimated based on residential address at baseline, which may not accurately reflect individual exposure over time. Dementia diagnoses were based on administrative data (hospital records and death certificates), which may not capture all cases. The study population is predominantly White British, limiting generalizability to other ethnicities. Residual confounding (influence of other unmeasured factors) is possible.

Footnote: Abbreviations: AAA, Abdominal Aortic Aneurysm; AF, Atrial Fibrillation; CAD, Coronary Artery Disease; COPD, Chronic Obstructive Pulmonary Disease; CpG sites, Cytosine-phosphateguanine sites; CVD, Cardiovascular Disease; FT3, Free Triiodothyronine; FT4, Free Thyroxine; GRS, Genetic Risk Score; HIBADH, 3-Hydroxyisobutyrate dehydrogenase; LONP1, Lon peptidase 1, mitochondrial; MDA, Malondialdehyde; MDD, Major Depressive Disorder; NO₂, Nitrogen Dioxide; NOx, Nitrogen Oxides; PM₁₀, Particulate Matter \leq 10 µm; PM_{2.5}, Particulate Matter \leq 2.5 µm; PRS, Polygenic Risk Score; mQTLs, methylation Quantitative Trait Loci; SLC25A28, Solute carrier family 25 member 28; SLE, Systemic Lupus Erythematosus; TAA, Total Antioxidant Activity; TSH, Thyroid-Stimulating Hormone; T3, Triiodothyronine; APOE ϵ 4 allele, Apolipoprotein E ϵ 4 allele.

other ethnicities.

Ma et Al., 2024 Polygenic Risk score PM2.5, PM10, No, G × E in- teraction not air poliutants High levels of aposure and aposure and aneurysm Abdominal not reported Not reported Interaction HR:- Main HR: UK Blobank participants PRS constructed from 31 Indepen- dem 13 Indepen- dem 13 Indepen- dem 13 Indepen- aortic Ma et Al., 2024 Polygenic Risk score PM10, teraction not air poliutants air poliutants aneurysm PM 2.5, per SDa dem 13 Indepen- participants from 31 Indepen- dem 13 Indepen- Indepen- Indepen- Indepen- Indepen- Indepen- Indepen-	Author & year	Genetic Variable	Environmen-	GxE interaction /Genetic Sus-	Direction of	Health	p-value of	Effect Size (In-	Study Partici-	Notes
Ma et Al, 2020 Polygenic PM2.5, No, G × E in- High levels of air pollutants Abdominal oncic Nat reported Main Hit: DK Biobank PRS constructed (PS) for NO2, NOx assesd. expoure and genetic risk anurysm PM2.5, per SDa dent SNPs Addominal NO2, NOx assesd. expoure and genetic risk anurysm PM2.5, per SDa dent SNPs Addominal Not, Aneu categories risk had a 121(116, 127), with AA in rysm (AAA) L categories risk had a recrease: HR = with AA in rysm (AAA) L associated p<001	a yea.			ceptibility reported				with (95% CI)	pants	
	Ma et Al., 2024	Polygenic Risk Score (PRS) for Abdominal Aortic Aneu- rysm (AAA)	PM2.5, PM10, NO2, NOX	No, G × E in- teraction not assessed. Genetic risk categories (low, inter- mediate, high) significantly associated with AAA risk (p < 0.001).	High levels of air pollutants exposure and high genetic risk had a higher risk of developing AAA.	Abdominal aortic aneurysm	Not reported	Interaction HR: - Main HR: PM 2.5, per SDa increase: HR = 1.21 (1.16, 1.27), p<.001 PM 10 , per SD b increase: HR = 1.21 (1.16, 1.27), p<.001 NO2, per SDc increase: HR = 1.16 (1.11, 1.22), p<.001 NOx, per SDd increase: HR = 1.10 (1.05, 1.15), p<.001	UK Biobank participants	PRS constructed from 31 indepen- dent SNPs associated with AAA in individuals of European ances- try (MAF > 0.05, $P < 1 \times 10^{-5}$) from two GWASs. Details of PRS construction and SNP information in Supplementary Materials (Text S1, Table S1). Partici- pants categorized into tertiles based on PRS. Significant interac- tions were repor- ted on an additive

Table 3. Summary of Gene-Environment Interactions for Environmental Exposure and Health Outcomes

scale, but exact p-values were not provided. See Table S8 for further details.

Rhee et	Coronary Ar-	Data on both	Because we lack	The effect of	Incident	Not Available	Difference in HR	249,082 par-	The <i>p-interaction</i>
al., 2024	tery Disease:	PM2.5 and	p-interaction	PM2.5 expo-	Cardiovas-	(NA)	at highest exposure	ticipants.	was not reported.
	PRS for Coro-	PM10 were	values, we will	sure appears	cular di-		level: 1.0.	Individu-	The difference in
	nary Artery	collected;	use "Suspected,"	stronger in	sease.	The p-interaction	This is <i>not</i> a	als aged	HRs at the high-
	Disease.	however,	Potential, or	individuals		value was not	formal interac-	40 to 69	est exposure le-
	Myocardial	the main	Possible to	with high		reported expli-	tion effect size,	years	vel is presented
	Infarction:	analysis	indicate that an	genetic risk		citly in this stu-	but rather the	(2006–	as a rough esti-
	PRS for Myo-	focused	interaction is	for [CVD		dy. Interactions	difference in HRs	2010).	mate of the
	cardial In-	on PM2.5.	suggested but not	Type].		were inferred	at the highest		interaction effect,
	farction.		statistically			based on dif-	exposure level, as		but statistical
	Any Stroke:		confirmed. A cru-			ferences in	a p-interaction		significance can
	PRS for Any		cial footnote is			Hazard Ratio	value is not		not be deter-
	Stroke.		necessary to			(HR) between	available.		mined.
	Ischemic		explain this.			genetic risk	This provides		PRS calculated
	Stroke: PRS					groups, but	a rough estimate		using continuous
	for Ischemic					without formal	of the difference		shrinkage method
	Stroke.					statistical testing	in effect between		(PRScs) based on
	Heart Failure:					for interactions.	genetic risk groups,		Bayesian regres-
	PRS for Heart						but does not		sion and continu-
	Failure.						account for data		ous shrinkage
	Atrial Fibril-						variability. Therefore,		priors (Ge et al.).
	lation: PRS						this value should be		SNPs coded 0, 1,
	for Atrial						interpreted with		or 2 based on risk
	Fibrillation.						caution		allele count. Pos-
									terior effect sizes

from GWAS summary statistics and external LD reference panel data were used. Cox proportional hazards models were used to assess the relationship between PM2.5 exposure, genetic risk (PRS), and cardiovas-

Wang et	Weighted	PM2.5,	Although genetic	PM2.5:	Incident	PM2,5:	Effect modifica-	452,762 par-	This article per-
al., 2022	genetic risk	PM10,	susceptibility to	Although the	Chronic	p-interaction=	tion observed,	ticipants	formed statisti-
	score (GRS)	NO2, NOx	COPD was consi-	interaction	obstructive	0.101	but not statisti-	from UK	cal analyses of
	for COPD		dered, no statis-	between	pulmonary	PM10:	cally significant	Biobank.	gene-environ-
	derived from		tically significant	PM2.5 and	disease	p-interaction=	(p-interaction >	Aged	ment interacti-
	22 SNPs		interaction be-	lifestyle was	(COPD).	0.753	0.05).	from 37	ons. However,
	associated		tween pollutants	not statistical-		NO2:		to 73	results of these
	with COPD in		and genetic risk was	ly significant,		p-interaction=		years old.	interaction ana-
	a previous		found.	there is a trend		0.123			lyses are repor-
	GWAS, using			suggesting		NOx			ted as subgroup-
	UK Biobank			that the effect		p-interaction=			specific HRs with
	data.			of PM2.5 on		0.258			p-interaction
				COPD risk may		The p-interac-			values, but not
				be slightly		tion values are			as interaction
				greater in		all greater than			HRs from explicit

individuals		0.05, meaning			interaction mo-
with an unfa-		the differences			dels. The text
vorable life-		in HRs between			and table con-
style. Further		the subgroups			firms this focus.
research is		are not statisti-			Based on the
needed to		cally significant.			data, HR increa-
confirm these					ses with increa-
findings.					sing GRS, sug-
PM10, NOx,					gesting that
NO2: There is					higher genetic
no statistically					susceptibility
significant					generally increa-
evidence of					ses the risk of
interaction					COPD.
between these					
pollutants and					
lifestyle.					
Therefore, no					
interpretation					
of the directi-					
on of interac-					
tion can be					
provided.					
Increased	Incident		Interaction effect:	UK Biobank	RERI > 0: super-
CAD risk	coronary	P-interaction:	PM2.5:	participants	additive inter-

Fu et al.,	Polygenic	PM2.5,	No significant	Increased	Incident		Interaction effect:	UK Biobank	RERI > 0: super-
2023	Risk Score	PM10,	multiplicative	CAD risk	coronary	P-interaction:	PM2.5:	participants	additive inter-
	(PRS) for	NO2, NOx	interaction	with higher	artery	0.211	Low Genetic Risk:		action (risk
	CAD based		(p > 0.05).	PM2.5;	disease		Low PM2.5: Ref.		exceeds sum
	on 40 SNPs		Significant	highest risk	(CAD).		High PM2.5:		of individual
	from a me-		additive	in high			1.06 [95%		effects);
	ta-analysis		interaction.	genetic risk			CI 1.00-1.12];		

excluding

UK Biobank

data.

& high		Intermediate Risk:	AP: proportion
PM2.5;		Low PM2.5:	of cases due to
synergistic		1.25 (95% Cl	interaction.
effect;		1.18 - 1.31).	AP > 0:
subgroups		High PM2.5:	Proportion of
(female,		1.30 (95% Cl	cases attributed
overweight/		1.23 - 1.37).	to interaction
obese,		High Genetic Risk:	(higher AP
smokers)		Low PM2.5:	indicates a
more sus-		1.54 (95% CI	larger
ceptible;		1.46 - 1.62).	
effect atte-		High PM2.5:	HRs from Cox
nuated after		1.56 (95% Cl	models, adjus-
adjusting for		1.48 - 1.64).	ted for demo-
race.	P-interaction:	PM10:	graphics, life-
	0.715	Low Genetic Risk:	style, SES,
		Low PM10: Ref.	study center,
		High PM10:	baseline
		1.02 [95%	health, and
		CI 0.96-1.08];	genetic cova-
		Intermediate Risk:	riates. (SES =
		High PM10:	Socioecono-
		1.26 (95% CI	mic Status)

1.18 - 1.32). High PM10: 1.28 (95% Cl 1.21 - 1.35). **High Genetic Risk:** High PM10: 1.48 (95% Cl 1.41 - 1.56).

	High PM10:
	1.55 (95% Cl
	1.48 - 1.63).
P-interaction:	NO2:
0.578	Low Genetic Risk:
	Low NO2: Ref.
	High NO2:
	1.05 [95%
	CI 0.99-1.11];
	Intermediate Risk:
	Low NO2:
	1.22 (95% CI
	1.16 - 1.28).
	High NO2:
	1.31 (95% CI
	1.24 - 1.38).
	High Genetic Risk:
	Low NO2:
	1.52 (95% CI
	1.45 - 1.59).
	High NO2:
	1.57 (95% CI
	1.49 - 1.65).
P-interaction:	NOx:
0.851	Low Genetic Risk:
	Low NOx: Ref.
	High NOx:
	1.03 [95%
	CI 0.98-1.09];
	Intermediate Risk:
	Low NOx:

1.15 - 1.27).
High NOx:
1.30 (95% CI
1.24 - 1.37).
High Genetic Risk:
Low NOx:
1.50 (95% CI
1.43 - 1.57).
High NOx:
1.57 (95% CI

1.21 (95% CI

Li et al., PRS for CAD

2022 (540 variants).

Long-term Yes (both

posure.

PM2.5 ex- add

additive and multiplicative).

risk observed in individuals with both high genetic risk and high PM2.5 expo-

sure.

Highest CAD

Incidentp-interactionCoronary< 0.001.</td>artery disease

(CAD).

vides the relative
excess risk due to
interaction
(RERI): 2.75 (1.32–
4.20). This is a
specific measure
of additive interaction.
The HR (95% CI)
for multiplicative
interaction was
1.19 (1.10 - 1.28).
p for interaction
p < 0.001.

The abstract pro-

A total of PRS calculated 41,149 partibased on 540 cipants mainvariants. PM2.5 ly Han Chiexposure catenese were gorized into included in tertiles. this analysis. Cox proportional hazards regression models with sub-cohort stratum on a calendar year time scale were used to analyze the association between PM2.5, PRS, and CAD. PM2.5

was analyzed as

both continuous (per 10 µg/m³ increment) and categorical (tertiles) variable. Three models with increasing confounder adjustment were used. Schoenfeld residual test performed. Exposure-response modeled using restricted cubic

Zhang et	* Genetic Risk	Joint expo-	Yes, interaction	Synergistic/	Incident	p-interaction:	Interaction HR	Over half a	* The study used
al., 2024	Score (PRS)	sure to mul-	analysis conduct-	enhancing.	Dementia.	Not reported.	(or other effect	million parti-	a weighted air pol-
	* APOE ε4	tiple air pol-	ed. The effect of	The abstract			size for the inter-	cipants aged	lution score to
	ΑΡΟΕ ε4	lutants	air pollution on	concludes that			action): The article	40–69 years	represent joint
	genotype	(PM2.5, PM10,	dementia appears	joint exposure			does not provide	in the UK	exposure to multi-
	(a well-known	NO2, and NOx).	to be modified by	to air pollu-			a specific HR or	Biobank data	ple pollutants.
	genetic risk		both a genetic risk	tants "sub-			other effect size	recruited in	* The authors
	factor for		score and APOE ε4	stantially in-			for the interaction	2006–2010.	assessed genetic
	Alzheimer's		genotype, sug-	creases the			itself. It reports		susceptibility using
	disease, a		gesting a syner-	risk of demen-			HRs for the main		both a PRS and
	common form		gistic/enhancing	tia, especially			effect of the air		APOE ε4 genotype.
	of dementia)		effect. However,	among indivi-			pollution score		* While the article
			the p-interaction	duals with			(e.g., HR 1.13 for		clearly indicates
			and interaction	high genetic			per IQR increase,		an interaction was
			effect size (e.g.,	susceptibility.			HR 1.26 for Q4 vs.		investigated, it

interaction HR)				Q1), but not a		lacks key statistical
are not reported				separate HR that		information (p-
in the abstract.				quantifies the		interaction and
				interaction.		interaction HR) to
						fully evaluate its
						statistical signifi-
						cance and magni-
						tude. Therefore,
						the conclusion of
						a synergistic effect
						is based on the
						observed pattern
						rather than a
						formal statistical
						test of interaction.
Yes, interaction	Suggestive of	Depression	p-interaction:	The article reports	398,241 parti	The abstract
analysis conduct-	synergistic/	and Anxiety	Not reported.	HRs for the main	cipants from	indicates that a

Gao et	A polygenic	PM2.5, PM10,	Yes, interaction	Suggestive of	Depression	p-interaction:	The article reports	398,241 parti	The abstract
al.,2023	risk score	PM coarse,	analysis conduct-	synergistic/	and Anxiety	Not reported.	HRs for the main	cipants from	indicates that a
	(PRS) ap-	NO2, Nox.	ed. The effect of	enhancing	* Prevalent		effects of air pol-	the UK	gene-environment
	proach, aggre-		air pollution on	interaction	(at baseline)		lutants but does	Biobank.	interaction was
	gating the		mental disorders	(effect of air	assessed by:		not report an HR		investigated, with
	effects of		appears to be	pollution	o Hospital		(or any other ef-		findings suggesting
	multiple ge-		modified by the	appears	admission		fect size measure)		that genetic pre-
	netic variants		genetic risk score	stronger in	records.		specifically for the		disposition to
	linked to		for mental disor-	individuals	o Mental		interaction. An		mental disorders
	mental health.		ders, suggesting	with higher	health ques-		interaction HR		may enhance the
			a synergistic/	genetic risk).	tionnaires		would quantify		effects of air pol-
			enhancing effect.		* Incident		how the effect of		lution. However,
			However, the		(during fol-		air pollution		the abstract does
			p-interaction and		low-up) as-		changes depen-		not provide key
			interaction effect		sessed by:		ding on the gene-		information

size (e.g., inter-	o Hospital	tic risk score. This	necessary for a
action HR) are not	admission	is essential for	full evaluation of
reported in the	records.	understanding	the interaction:
abstract.	o Mental	the magnitude of	* Specifics of th
	health ques-	the interaction.	PRS: Details
	tionnaires		regarding the

valuation of nteraction: cifics of the Details ding the SNPs included in the polygenic risk score (PRS) or its calculation method are not provided. * p-interaction: A p-value for the interaction term is not reported, precluding a definitive assessment of statistical significance. * Interaction effect size: No interaction HR (or other measure of effect size for the interaction) is reported, making it impossible to determine the magnitude of the interaction. * Method of inter-

action analysis: The specific statistical method used to test the interaction is not described.

Gruzieva NO2 No GxE inter-Effect NO2 Differential The article does 1,508 new-Epigenome-wide These participants et al., DNA mesignificant associaaction. exposure on not report any born babies were newborn 2016 DNA methylathylation p-interaction tions [false discovery in four Eurobabies. They tion in mitoat specific values. rate (FDR) p < 0.05] were assessed pean and chondria CpG sites between maternal North Ameusing cord blood related genes in cord NO2 exposure during rican studies DNA methylation. blood of pregnancy and Cord blood is newborns. DNA methylation collected at the in newborns for time of birth, so 3 CpG sites. this sample re-The associations presents newthey found were borns. This is the statistically signifiprimary analysis cant after correcgroup for the epigenome-wide ting for multiple comparisons. association study However, the (EWAS). abstract does not n = 733 (4 years provide specific old) and n = 786 effect size measu-(8 years old): res like beta coef-These were subficients, odds sequent look-up ratios, or hazard analyses. ratios that would Prenatal NO2

									analyzed.
									Methylation was
									analyzed at spe-
									cific CpG sites.
g et	18 SNPs:	PM2.5,	Yes, the article	Effect of PM2.5	Lung	NR (not reported)	PM2.5: Interm.	455,974	PRS is likely
021	Based on 18	PM10,	states that there	on lung cancer	cancer		PRS: RERI 0.36,	UK Biobank	calculated based
	single nucleo-	NO2, NOx	are additive inter-	risk stronger in			AP 0.26; High	participants	on multiple SNPs;
	tide polymor-		actions between	individuals			PRS: RERI 0.37,		need to verify the
	phisms		air pollutants and	with high PRS			AP 0.21. Positive		details of the arti-
	(SNPs) repor-		genetic risk.				additive interac-		cle. Analysis may
	ted in the						tion.		be stratified by
	largest lung						PM10: Interm.		lung cancer type.
	cancer GWAS						PRS: RERI -0.03,		Associations and
	of European						AP -0.02; High PRS:		interactions were
	descent (In-						RERI 0.11, AP 0.06.		assessed using Co
	ternational						No significant ad-		proportional ha-
	Lung Cancer						ditive interaction.		zards regression
	Consortium).						NO2: Interm. PRS:		models, adjusted
	Polygenic Risk						RERI 0.07, AP 0.05;		for relevant cova-
	Score (PRS):						High PRS: RERI		riates.
	A polygenic						0.26, AP 0.15.		
	risk score						Positive additive		

Huang al., 20

(PRS) was

nitude of the change in methylation associated with NO2 expo-

sure.

interaction in

quantify the mag-

exposure and DNA methylation (an epigenetic modification) were assessed in newborns; no GxE interaction

х

constructed	High PRS.
based on	NOx: Interm. PRS:
these 18 SNPs	RERI 0.33, AP 0.26;
and catego-	High PRS: RERI
rized into low,	0.53, AP 0.32. Posi-
intermediate,	tive additive
and high ge-	interaction.
netic risk	
based on	
tertiles of the	
PRS distribu-	
tion among	

non-cases.

A polygenic	PM2.5,	Yes, participants	The effect of	Major	PM2.5:	Interaction HR: -	UK Biobank	Significant syner-
risk score	PM10,	were stratified	air pollution	depressive	P-interaction =	Main HR:	participants	gistic interaction
(PRS) was	NO2, NOx	into groups based	on MDD	disorder	0.036	PM2.5, per 5-μg/m³		(p < 0.05). High-
defined	Annual ave-	on combinations	risk tends to	(MDD)	(p-value < 0.05)	increase:		lights the impor-
using 17	rage concen-	of genetic risk	be stronger			Model 1: HR = 1.92		tanceof reducing
MDD-asso-	trations of	(low, intermediate,	in individu-			(95% CI: 1.79–2.07)		PM2.5 exposure,
ciated ge-	pollutants	high) and envi-	als with high			p < 0.001		especially for
netic loci.	were esti-	ronmental	genetic risk			Model 2: HR = 1.16		genetically suscep-
	mated	exposure (e.g.,	(synergistic			(95% CI: 1.07–1.26)		tible individuals.
	using a Land	high/low PM2.5)	interaction).			p < 0.001		Significant syner-
	Use Regres-	to assess com-						gistic interaction
	sion model.	bined effects			PM10:	PM10, per 10-μg/m3		(p < 0.05).further
					P-interaction =	increase:		reinforces the link
	A polygenic risk score (PRS) was defined using 17 MDD-asso- ciated ge- netic loci.	A polygenicPM2.5,risk scorePM10,(PRS) wasNO2, NOxdefinedAnnual ave-using 17rage concen-MDD-asso-trations ofciated ge-pollutantsnetic loci.were esti-matedusing a LandUse Regres-sion model.	A polygenicPM2.5,Yes, participantsrisk scorePM10,were stratified(PRS) wasNO2, NOxinto groups baseddefinedAnnual ave-on combinationsusing 17rage concen-of genetic riskMDD-asso-trations of(low, intermediate,ciated ge-pollutantshigh) and envi-netic loci.were esti-ronmentalmatedexposure (e.g.,using a Landhigh/low PM2.5)Use Regres-to assess com-sion model.bined effects	A polygenicPM2.5,Yes, participantsThe effect ofrisk scorePM10,were stratifiedair pollution(PRS) wasNO2, NOxinto groups basedon MDDdefinedAnnual ave-on combinationsrisk tends tousing 17rage concen-of genetic riskbe strongerMDD-asso-trations of(low, intermediate,in individu-ciated ge-pollutantshigh) and envi-als with highnetic loci.were esti-ronmentalgenetic riskmatedexposure (e.g.,(synergisticusing a Landhigh/low PM2.5)interaction).Use Regres-bined effectsbined effects	A polygenicPM2.5,Yes, participantsThe effect ofMajorrisk scorePM10,were stratifiedair pollutiondepressive(PRS) wasNO2, NOxinto groups basedon MDDdisorderdefinedAnnual ave-on combinationsrisk tends to(MDD)using 17rage concen-of genetic riskbe strongerMDD-asso-trations of(low, intermediate, in individu-in individu-ciated ge-pollutantshigh) and envi-als with highnetic loci.were esti-ronmentalgenetic riskmatedexposure (e.g., insig a Land(synergisticusing a Landbined effectsinteraction).bined effectsbined effects	A polygenicPM2.5,Yes, participantsThe effect ofMajorPM2.5:risk scorePM10,were stratifiedair pollutiondepressiveP-interaction =(PRS) wasNO2, NOxinto groups basedon MDDdisorder0.036definedAnnual ave-on combinationsrisk tends too(MDD)(p-value < 0.05)using 17rage concen-of genetic riskbe stronger	A polygenicPM2.5,Yes, participantsThe effect of a ir pollutionMajorPM2.5;Interaction HR: -risk scorePM10,were stratifiedair pollutiondepressiveP-interaction =Main HR:(PRS) wasNO2, NOXinto groups basedon MDDdisorder0.036PM2.5, per 5-µg/m³definedAnnual ave-on combinationsrisk tends to(MDD)(p-value <0.05)increase:using 17rage concen-of genetic riskbe stronger(MDD)(p-value <0.05)Model 1: HR = 1.92MDD-asso-trations of(low, intermediate,in individu-(yer sci)(95% CI: 1.79-2.07)ciated ge-pollutantshigh and envi-als with highyer sci)p<0.001netic loci.were esti-ronmentalgenetic riskyer sci)(95% CI: 1.07-1.26)matedexposure (e.g.,(synergisticinteraction)yer sci)p<0.001using a Landhigh/low PM2.5)interaction)yer sci)p<0.001Use Regres-to asses com-yer sci)p<0.001yer sci)ion modelbinel effectsyer sci)Ph10.per 10-µg/M3p-interaction =p-interaction =p-interaction =p-interaction =	A polygenicPM2.5,PM2.5, participantsThe effect of a ipollutionMajorPM2.5;Interaction HR:-UK Biobankrisk scorePM10,were stratifiedaipollutiondepressiveP-interactionMain HR:participants(PS) wasNO2, NOXintogroup basedon MDDdisoder0.036PM2.5, per 5-µg/m³-definedAnnual aveon combinationsrisk tends to(MDD)(p-value < 0.05)increase:using 17rage conceroof genetic riskbe strongerindrividue

0.025

(p-value < 0.05)

Model 1: HR = 1.30

(95% CI: 1.20 - 1.41)

Model 2: HR = 1.00

p < 0.001

air pollution and

MDD risk in gene-

tically vulnerable

individuals.

	(95% CI: 0.92 - 1.09)	Significant syner-
	p = 0.610	gistic interaction
NO2:	NO2, per 10-μg/m3	(p < 0.05). Suggests
P-interaction =	increase:	a shared biological
0.030	Model 1: HR = 1.15	pathway involving
(p-value < 0.05)	(95% CI: 1.13 - 1.17)	genetic predispo-
	p < 0.001	sition and NO2
	Model 2: HR = 1.00	exposure.
	(95% CI: 0.98 - 1.02)	No significant
	p = 0.695	interaction detec-
NOx:	NOX, per 20-µg/m3	ted (p > 0.05).
P-interaction =	increase:	Further research
0.080	Model 1: HR = 1.15	is needed to ex-
(p-value > 0.05)	(95% CI: 1.13 - 1.17)	plore the potential
	p < 0.001	role of NOx in
	Model 2 : HR = 1.02	MDD development.
	(95% CI: 1.02 - 1.05)	
	p = 0.017	

Huang et	1. SNPs (Single	PM2.5,	G x E interaction:	HR increases	Incident	p-interaction:	While Figure 1	The popu-	While the authors
al., 2024	Nucleotide	PM10,	Not Reported, but	with increa-	Parkinson's	not available.	displays hazard	lation-based	performed statis-
	Polymor-	NO2, NOx	genetic suscepti-	sing GRS,	disease	Figure 1 presents	ratios (HRs) for	study involved 312,009	tical analyses of
	phisms):	The annual	bility reported.	indicating	(PD).	visual evidence	each combination	initially	gene-environment
	The specific	average air		that higher		of potential	of pollution	PD-free parti-	interactions using
	SNPs used in	pollution		genetic sus-		interaction;	exposure and	cipants with	Cox proportional
	the study,	concentration		ceptibility		however, the p-	genetic risk group,	complete	hazards models
	which in this	was intricate-		generally		value for the	it does not	genotyping	(including calcu-
	case are 44	ly calculated		increases		interaction term	explicitly provide	data.	lating p-interacti-
	SNPs associ-	using an ad-		the risk of		is necessary to	an "interaction HR.		on values), Figure
	ated with	vanced land		Parkinson's		determine	To quantify the		1 focuses on

Parkinson's	use regressi-	disease.	statistical	effect size of the	visualizing main
disease (PD),	on (LUR)		significance. This	interaction, a	effects of genetic
derived from	model.		value is not	formal statistical	risk and strati -
the PD GWAS.			shown in the	analysis is needed.	fying participants
2.βCoeffi-			article.	The figure sug -	by genetic risk
cients: The				gests a modest	level, rather than
log-odds				effect modification,	presenting inter-
ratio (β) per				with the HR in -	action effects.
allele for				creasing more	Consequently,
each SNP,				steeply across	specific results of
which repre-				pollution quartiles	the interaction
sents the risk				in the high genetic	analyses (e.g.,
associated				risk group compa-	p-values, inter-
with the SNP				red to the low	action HRs) are
for PD, ob-				genetic risk	not reported in
tained from				group.	the context of
the relevant					Figure 1.
GWAS study.					
3, Number					
of Risk Alleles					
(SNPi): The					
count of risk					
alleles (0, 1,					
or 2) for each					
SNP in each					
individual.					
4. Total					
Number of					
SNPs (n):					
The total					
number of					

SNPs used in

the analysis,

which is 44

in this study.

Zhang et	Polygenic Risk	Fine particu-	Yes. The study	The interac-	Processing	The article	The article	497 healthy	The study inves-
al., 2024	Score (PRS)	late matter	investigated the	tion suggests	speed.	mentions spe-	doesn't provide	adult volun-	tigated the inter-
	of Major	(PM2.5)	interactive effect	that genetic		cific p-values	specific effect sizes,	teers (48.7%	active effect of air
	Depressive	exposure	of air pollution	predispositi-		for the interac-	but it describes	male, mean	pollution (PM2.5)
	Disorder	(average	(PM2.5) and ge-	on to MDD		tion effects:	the direction of	age 24.5 years)	and genetic risk
	(MDD).	over 6	netic risk for MDD	combined		* Precuneus lo-	the interaction	living in Beijing	for MDD on pro-
		months).	(PRS) on proces-	with higher		cal connectivity:	(worsening effect	for at least	cessing speed and
			sing speed. They	PM2.5 expo-		PFWE=0.028	with combined	1 year.	resting-state brain
			found that:	sure has a		* Default mode	exposure and high		function using
			* In individuals	synergistic		network con-	genetic risk).		fMRI and cognitive
			with high genetic	effect. It		nectivity:			tests.
			risk for MDD,	worsens the		PFDR<0.05.			* The study sug-
			higher PM2.5 ex-	negative im-					gests that air pol-
			posure was asso-	pact of air					lution may have a
			ciated with redu-	pollution on					stronger negative
			ced precuneus	brain func-					impact on brain
			connectivity.	tion (reduced					function and pro-
			* Genetic risk for	local con-					cessing speed in
			MDD amplified the	nectivity in					individuals with a
			effect of PM2.5 on	precuneus,					genetic predispo-
			DMN connectivity,	increased					sition to depres-
			especially in fron-	connectivity					sion.
			tal-parietal and	in DMN) and					* The study sug-
			frontal-limbic	processing					gests that air pol-
			regions.	speed.					lution may have
			* In genetically						a stronger negative

predisposed indivi-	impact on brain
duals, higher	function and pro-
PM2.5 was linked	cessing speed in
to increased con-	individuals with a
nectivity between	genetic predispo-
the left angular	sition to depres-
and cuneus gyri,	sion.
which in turn was	* The study also
associated with	explored the po-
slower processing	tential role of DNA
speed.	methylation and
	gene expression o

а 0-NA ۱ of the SLC30A3 gene in this interaction.

Wu et al.,	PRS for Pso-	PM10,	Yes (multiplica-	A multiplica-	Incident	PM10:	Multiplicative:	474 055 indi-	Time-varying Cox
2024	riasis.	PM2.5,	tive interaction	tive interacti-	Psoriasis	P-interaction	HR 1.75 (1.25-2.45)	viduals with	proportional
		NO2, NOx	between PM10	on between		(Multiplicative):	The most sub-	a mean (SD)	hazards models
			and genetic	PM10 and		0.002	stantial risk of	age of 56.54	used. Adjusted
			predisposition).	genetic pre-		P-interaction	psoriasis deve-	(8.09) years.	for various con-
				disposition		(Additive): Not	lopment was		founders. Ana-
				(P for inter-		reported.	observed in par-		lysis restricted
				action = .002)		PM2.5:	ticipants expo-		to White Europe-
						P-interaction:	sed to elevated		an ethnicity.
						0.105	air pollution le-		
						P-interaction	vels combined		
						(Additive): Not	with high genetic		
						reported.	risk.		
						NO2:			

P-interaction:

0.051

P-interaction (Additive): Not reported. PM10: P-interaction: 0.053 P-interaction (Additive): Not reported.

There was a Multiplicative Incident PM2,5: The Effect size 485,288 par-Synergistic significant inter-(multiplicashizo should represent ticipants interactions p-interaction= action only for tive), with phrenia. 0.48 the observed from UK were assessed NO2 and NOx higher genetic PM10: strength of the Biobank. using Cox proexposure, indirisk amplifies p-interaction= association beportional ha cating that the the impact of 0.79 tween genetic risk, zards models effect of expoair pollution NO2: air pollution expowith a product sure on schizoexposure p-interaction= sure, and schizoterm for exposure and genetic phrenia risk (NO2 and < 0.07 phrenia risk. NOx depends on the NOx) on 1. Low genetic risk, risk. The reporindividual's leschizophrenia p-interaction= T3 HR: ted p-interaction vel of genetic risk. < 0.01 PM2.5: 2.33 (95% values represent susceptibility. The adverse This indicates CI: 1.93-2.96). the statistical Individuals with effects of air the genetic risk PM10: 2.69 (95% significance of high genetic risk pollution are for schizophrenia CI: 2.09 - 3.46). this interaction for schizophrenia more prodoes not signifi-NO2: 2.40 (95% term. The proare more affecnounced in portional hacantly modify CI: 1.37 - 3.07). ted by NO2 and individuals the effect of NOx: 2.60 (95% zards assumpti-PM2.5 and NOx exposure, with greater CI: 1.94 - 3.22). on was checked highlighting the genetic sus-PM10 on schi-2. High genetic risk, and met. Ha-T3 HR: zard ratios (HR) importance of ceptibility. zophrenia risk.

Liu et al., PRS for schi-

2024

zophrenia.

PM10, NO2, NOx

PM2.5,

			gene-environ-				PM2.5: 6.25 (95%		and 95% confi-
			ment interac-				Cl: 5.03 - 7.7).		dence intervals
			tions in schizo-				PM10: 7.36 (95%		(95% CI) are
			phrenia risk.				Cl: 5.86 - 9.29).		provided for
							NO2: 6.31 (95%		main effects and,
							Cl: 5.02 - 7.93).		where applicable,
							NOx: 6.62 (95%		for the combined
							Cl: 5.24 - 8.37).		effect of expo-
							p-value for trends		sure and genetic
							< 0.001 for 4		risk.
							pollutants.		
Ma et al.,	Polygenic	PM2.5,	While visual	direction of	Incident	PM2,5:	Visually stronger	UK Biobank	Multiplicative
2024	Risk Score	PM10,	inspection of	the interac-	stroke,	p-interaction=	exposure effect in	participants	interactions
	(PRS) for	NO2, NOx	hazard ratios	tion is sy-	ischemic	0.11	high genetic risk		were assessed
	Stroke,		suggested a	nergistic or	stroke, and	PM10:	group. Graph sug-		using Cox pro-
	using 71		potential	multiplicative.	hemorrhagic	p-interaction=	gests increased		portional ha -
	independent		combined effect		stroke	0.75	exposure effect		zards models
	SNPs asso-		of air pollution			NO2:	with higher		with a product
	ciated with		and genetic risk			p-interaction=	genetic risk.		term for expo-
	stroke in		on stroke, no			0.02			sure and genetic
	European		statistically			NOx			risk. The repor-
	ancestry		significant			p-interaction=			ted p-interaction
	populations.		multiplicative			0.87			values represent
			interaction was						the statistical
			found (all p-						significance of
			interaction						this interaction
			> 0.05). However,						term. The pro-
			some evidence						portional ha-
			of additive						zards assumpti-
			interaction was						on was checked

and met. Hazard ratios (HR) and 95% confidence intervals (95% CI) are provided for main effects and, where applicable, for the combined effect of exposure and genetic risk.

A total of	GxE interaction
452,012 (895	observed, with
cases) and	epigenetic alter-
453,199	ations in CXCR2
(2082 cases)	and MHC class III
participants	region implicated
were eligible	as potential me-
for CD and	chanisms. Epige-
UC analysis,	netic Mendelian
respectively.	Randomization
	(MR) analysis was
	performed.
	Cox regression,
	Schoenfeld resi-
	duals test, Epige-
	netic MR analysis,
	Co-localization
	and gene expres-

observed.

Chen et

al., 2024

sults: "UC NO2 exposure,

PM2.5 expotive).

NOx exposure,

Genetic Risk sure, Com-Score for UC). bined air pol-For CD relution score. sults: "CD GRS" (or

Genetic Risk

Score for CD).

with increased UC risk, with effects modified by lifestyle and genetic influences. Epigenetic alterations in CXCR2 and MHC class III region are implicated

> as potential mechanisms.

Air pollution

is associated

Incident P-interaction ulcerative for multiplicacolitis (UC). tive model = 2.75E-01 P-interaction for additive model = 1.23E-03

Multiplicative Interaction: The effect size for the multiplicative interaction is represented by the Interaction HR (95% CI). However, the HRs presented in the "Subgroup analysis" section are not the interaction HRs directly. They are the HRs for the effect of air pollution within each genetic risk

Yes (Additive and Multiplica-

For UC re-

GRS" (or

group.	sion analyses.;
Additive Inter-	The main focus
action: The effect	of the study was
size for additive	on Ulcerative
interaction is gi-	Colitis, with no
ven by the RERI:	significant asso-
0.95 (95% CI:	ciation found
0.34-1.57)	for CD.

Footnote: Abbreviations: OR, Odds Ratio (a measure of association between an exposure and an outcome); CI, Confidence Interval (a range of values that likely contains the true population parameter); RERI, Relative Excess Risk due to Interaction (the proportion of disease among those with both the exposure and the genotype that is attributable to their interaction); AP, Attributable Proportion due to Interaction (the proportion of disease among those with both the exposure and genotype); SNP, Single Nucleotide Polymorphism (a variation at a single nucleotide that occurs at a specific position in the genome); PRS, Polygenic Risk Score (a score that estimates an individual's risk of a disease based on their genetic variation); PM_{2.5}, Particulate Matter with a diameter \leq 10 µm; NO₂, Nitrogen Dioxide; NO_x, Nitrogen Oxides; GWAS, Genome-Wide Association Study; GxE, Gene-Environment Interaction.