It aims to publish original, theoretical and practical advances in : Computer Science & Engineering Information Technology Information System Electrical and Electronics Engineering Electronics and Telecommunication Mechanical Engineering Civil Engineering industrial Engineering all interdisciplinary streams of Engineering Sciences. Yayasan Riset dan Pengembangan Intelektual (YRPI) 2019 #### https://journal.yrpipku.com/index.php/jaets/about Editorial Team: https://journal.yrpipku.com/index.php/jaets/about/editorialTeam #### Journal of Applied Engineering and Technological Science (JAETS) Current Archives About the Journal Editorial Team Announcements Privacy Statement Submission: Home / Editorial Team #### **Editorial Team** Editor in Chief: Dr. Muhammad Luthfi Hamzah, B.IT, M.Kom Universitas Islam Negeri Sultan Syarif Kasim, Indonesia. Scopus ID 57211346531 Editor Board : Prof. Dr. V.D. Ambeth Kumar, Panimalar Engineering College, India. Scopus ID: 37100924000 Carlos Hernán Fajardo-Toro, PhD. Universidade de Vigodisabled, Vigo, Spain. Scopus ID: 57215S01173 Ghazala Ishrat, Ph.D (Habib University), Pakistan. Scopus ID: 57211030470 R. Seenivasan, Ph.D (Madurai Kamaraj University), India: Scopus ID: 57209451482 Dr. Ghazala Ishrat, Jamia Millia Islamia, India. Google Scholar Jhoselle Tus, St. Paul College of Bocaue, Philippines. Google Scholar Shatha Hussain, City University College of Ajman, Uni Emirat Arab Dr. Rado Yendra, Universitas Islam Negeri Sultan Syarif Kasim, Indonesia. Scopus ID: 55670887600 Muhammad Israr Fathoni, Universiti Kebangsaan Malaysia, Malaysia. Scopus ID: 57194045723 Dr. Al Hamidy Hazidar, MIT, Universiti Kebangsaan Malaysia, Malaysia. Scopus ID: 57213521384 Mohammed Saud Mira, Independent researcher, Saudi Arabia. Scopus ID: 57205345714 Sutoyo, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia. Scopus ID 57142558400 Afriansyah, Universitas Lancang Kuning, Indonesia. google scholar Syaiful Islami, Universitas Negeri Padang, Indonesia. Scopus: 57207300018 Anofrizen, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia. Scopus: S7194573991 Muh Anhar, Politeknik Negeri Ketapang, Indonesia. Google Scholar Assoc. Prof. Dr. Hamzah, Universitas Islam Riau, Indonesia. Scopus ID 57205297973 Dr. Hastuti Marlina, Sekolah Tinggi Ilmu Kesehatan Hang Tuah Pekanbaru, Indonesia. Scopus ID 57194596691 Nesdi Evrilyan Rozanda, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia. Scopus ID: 56464326000 Irohito Nozomi, Universitas Putra Indonesia YPTK Padang, Indonesia. Scopus ID: 57222902170 Cendra Wadisman, Universitas Putra Indonesia YPTK Padang, Indonesia. Scopus ID: 57222898934 Dr. Zulfadli Hamzah, Universitas Islam Riau, Indonesia. <u>Scopus ID 57044487600</u> Dr. Wenny Marthiana, ST, MT. Universitas Bung Hatta, Indonesia. Scopus ID: 57201862378 #### Associate Editors: Dr. B.V. Santhosh Krishna, Department of ECE, New Horizon College of Engineering, Bengaluru, Karnataka, India, Scopus ID: 56888824700 Abdessalam EL YASSINI, Ph.D, Faculté des Sciences Semlalia, Cadi Ayyad University, Morocco, <u>Scopus ID</u>: 57194680626 Asst. Prof. Khongdet Phasinam, Ph.D., Pibulsongkram Rajabhat University, Thailand, Scopus ID: 57225180258 Dr. Batara, Tong Ji University, Shanghai, China, Scopus ID: 57202757895 Dr. Leo John F, Prowess University, United States, <u>Scopus ID: 7004377227</u> Mr. Ronak Gandhi, ITM Vocational University, Vadodara, India, Scopus ID: 57208575257 Ibrahim Hanaish, Misuratu University, Libya Scopus ID: 54405615400 Assoc. Prof. Dr. Wan Zawiah Wan Zin , Universiti Kebangsaan Malaysia, Malaysia <u>Scopus ID</u> : 24465955700 Anton Abdulbasah Kamil, Istanbul Gelisim University, Turkey Scopus ID: 24481107300 Gusman Nawanir, P.hD, Universiti Malaysia Pahang, Malaysia Scopus ID: 55887973700 Abhay Pratap Singh, Gurukula Kangri Vishwavidyalaya, Haridwar, India Scopus ID: 57215528239 Dr. Sunariya Utama, B.IT, M.IT, Universiti Utara Malaysia, Malaysia <u>Scopus ID</u>: 57190944772 Dr. Mahesi Agni Zaus, Universiti Tun Husein Onn Malaysia, Malaysia <u>Scopus ID</u> 57207312835 Dr. Rizky Ema Wulansari, M.Pd.T, Universiti Tun Husein Onn Malaysia, Malaysia <u>Scopus ID 57193502350</u> Al-Khowarizmi, Universitas Muhammadiyah Sumatera Utara, Indonesia <u>Scopus ID</u> 57204804487 Dr. Zainol Mustafa, Universiti Kebangsaan Malaysia, Malaysia. <u>Scopus ID</u>: 36504772800 Prof. Dr. Okfalisa, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia. Scopus ID: 35102923400 Dr. Astri Ayu Purwati, M.Sc, Institut Bisnis dan Teknologi Pelita Indonesia, Indonesia Scopus ID: 57205297859 Prof. Dr. Kasman Rukun Universitas Negeri Padang, Indonesia <u>Scopus ID</u>: 57210974981 Dr. Evizal Abdul Kadir. Universitas Islam Riau, Indonesia Scopus ID : 50561254400 Dr. Abdullah Bin Husin. Universitas Islam Indragiri, Indonesia Scopus ID : 57206889771 Prof. Dr. Ambiyar, Universitas Negeri Padang, Indonesia Scopus ID: 57207299138 Dr. Arif Ridho Lubis, Politeknik Negeri Medan, Indonesia Scopus ID: 57188875498 Dr. Yahfizham, ST, M.Cs, Universitas Islam Negeri Sumatera Utara, Indonesia Scopus ID: 57201748107 Dr. Edi Septe, MT, Universitas Bung Hatta, Indonesia Scopus ID: 56119695800 Dr. Suryadimal, MT, Universitas Bung Hatta, Indonesia Scopus ID: 57205216028 Muhammad Marizal, Universitas Islam Negeri Sultan Syarif Kasim, Riau, Indonesia Scopus ID 57192941205 Dr. Rukin, Universitas Teknologi Surabaya, Indonesia Sinta Dr. Yenny Desnelita, M.Kom, Institut Bisnis dan Teknologi Pelita Indonesia, Indonesia Scopus ID: 57200088180 Dr. Yogi Yunefri, M.Kom, Universitas Lancang Kuning, Indonesia Scopus ID: 57200089157 Assoc. Prof. Dr. Astri Ayu Purwati, M.Sc, Institut Bisnis dan Teknologi Pelita Indonesia, Indonesia <u>Scopus ID</u>: <u>57205297859</u> Assoc. Prof. Dr. Alex Wenda, ST., M.Eng, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia. <u>Scopus ID</u>: 57207458490 Home / Archives / Vol. 6 No. 1 (2024): Journal of Applied Engineering and Technological Science (JAETS) # Vol. 6 No. 1 (2024): Journal of Applied Engineering and Technological Science (JAETS) The author's countries are coming from Kuwait (American University of the Middle East), United Kingdom (Nottingham Trent University), Taiwan (National Chung Hsing University), Australia (Western Sydney University), Vietnam (Hanoi University of Industry, Phenikaa University, Vietnam Academy of Science and Technology, Vietnam National Post and Telecommunication Group), Malaysia (Sultan Idris Education University, Universiti Kebangsaan Malaysia, Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Universiti Tun Hussein Onn Malaysia), Iraq (Al-Nahrain University, University of Baghdad, Al-Mansour University CollegeBaghdad), Morocco (University Mohammed V in Rabat (UM5), University Chouaib Doukkali of El Jadida) , Peru (UNIVERSIDAD NACIONAL DEL CALLAO, UNIVERSIDAD CIENCIAS Y HUMANIDADES, UNIVERSIDAD CESAR VALLEJO), India (Lyallpur Khalsa College Technical Campus, Mepco Schlenk Engineering College, Panimalar Engineering College, SRM Institute of Science and Technology, KCG College of Technology, Adithya Institute of Technology, Dayananda Sagar University, Hindustan College of Arts and Science, Thiagarajar College of Engineering, Jyothi Engineering College, Sri Venkateswara College of Engineering & Technology (A), Loyola Institute of Technology and ScienceR. M. K. College of Engineering and Technology,, Noorul Islam Centre for Higher Education, R. M. K. College of Engineering and Technology, S.T.Hindu College, Erode Sengunthar Engineering CollegeS.A. Engineering College, Symbiosis Institute of Business Management, Amity University), Myanmar(Yangon Technological University), Thailand (Ramkhamhaeng University, Rajamangala University of Technology Lanna Tak, Chiang Mai University, Sripatum University), Brunei Darussalam (Universiti Islam Sultan Sharif Ali), Bangladesh (Jahangirnagar University), Indonesia (Universitas Gadjah Mada, Research Center for Nuclear Reactor Technology, National Research and Innovation Agency, Indonesia, Universitas Padjadjaran, Politeknik Manufaktur Bandung, Institut Teknologi Sepuluh Nopember, Bina Nusantara University, Universitas Hasanuddin, Universitas Andalas, Universitas Negeri Padang, Universitas Islam Negeri Sultan Syarif Kasim Riau, Institut Teknologi Telkom Purwokerto, Institut Agama Islam Negeri Curup, Institut Agama Islam Negeri Kerinci, Universitas Riau, Universitas Tadulako, Universitas Samudra, Universitas Lancang Kuning, Universitas Mulawarman, Universitas Sains dan Teknologi Indonesia, Universitas Hang Tuah Pekanbaru, Marine and Fisheries Polytechnic Sorong, Sorong Muhammadiyah University of Education, Marine and Fisheries Polytechnic Kupang, Marine and Fisheries Polytechnic Bone, Sebelas Maret University, Airlangga University, Telkom University, Purwokerto, Universitas Semarang, Politeknik Negeri Malang, University of Pembangunan Nasional (UPN) Veteran Yogyakarta, University of Bengkulu, Universitas Medan Area, Universitas Sumatera Utara, HKBP Nommensen University, Politeknik ATI Padang) DOI: https://doi.org/10.37385/jaets.v6i1 Published: 2024-12-15 Articles On The Assembly Line Balancing Problem: A Simplified Perspective With The Precedence Matrix Magdy Helal, Kaushik Nag, Rifat Ozdemir PDF | Syaifullah Syaifullah, Shamsul Arrieya Ariffin, Norhisham Mohamad Nordin | 21-47 | |---|-------------------| | PDF | | | Development of an Optimized Ensemble Least Squares Model for Identifying Potential Deposi | Customers | | Firman Aziz, Mutia Maulida, Jafar Jafar, Nurafni Shahnyb, Norma Nasir, Ampauleng Ampauleng | 48-59 | | □ PDF | | | Pre-trained BERT Architecture Analysis for Indonesian Question Answer Model | | | Sudianto Sudianto | 60-68 | | Ď PDF | | | An Enhanced Image Segmentation Technique-Based on Motion Detection Algorithm | | | Zaid Sh. Bakr, Hamzah M. Marhoon,
Ammar Alaythawy | 69-85 | | ₽ PDF | | | Air-Gap Reduction and Antenna Positioning of an X-Band Bow Tie Slot Antenna on 2U CubeSat | 5 | | Boutaina Benhmimou, Fouad Omari, Nancy Gupta, Khalid El Khadiri, Rachid Ahl Laamara, Mohamed El I | akkali 86-102 | | ₽ PDF | | | Scene Text Detection and Recognition Using Maximally Stable Extremal Region | | | Golda Jeyasheeli P, Athinarayanan B, Manish T, Mohamad Umar M | 103-114 | | PDF | | | Multimodal Analysis of Augmented Reality in Basic Programming Course: Innovation Learning | in Modern Classes | | Rizky Ema Wulansari, Rizki Hardian Sakti, Hasep Saputra, Agariadne Dwinggo Samala, Rifyal Novalia, Hl | a Myo Tun 115-137 | | PDF PDF | | #### Software Design for Inventory Management Improvement in a Peruvian National University Linett Velasquez, Santiago Rubiños, Junior Grados, Juan Grados, Claudia Marrujo 138-154 PDF Environmental Quality Impact Analysis of Settlements Bontang Kuala, East Kalimantan Province Andrew Stefano, Triyatni Martosenjoyo, Idawarni Asmal, Edward Syarif 155-173 PDF Does Social Presence on Social Commerce Platform Attract Buying Intention of Indonesian Local Food? Ratni Prima Lita, Meuthia Meuthia, Devi Yulia Rahmi, M. Fajar Syafrida 174-191 PDF Interactive Geographic Visualization and Unsupervised Learning for Optimal Assignment of Preachers to **Appropriate Congregations** Rahmad Kurniawan, Ibnu Daqiqil ID, Abdul Somad Batubara, Fitra Lestari, Arisman Adnan, Fatayat Fatayat, Ilyas 192-205 Husti PDF Investigating Tensile Strength in SLA 3D Printing Enhancement Through Experimentation and Finite Element Siwasit Pitjamit, Norrapon Vichiansan, Parida Jewpanya, Pinit Nuangpirom, Pakpoom Jaichomphu, Komgrit Leksakul, #### Sara Detection on Social Media Using Deep Learning Algorithm Development M. Khairul Anam, Lucky Lhaura Van FC, Hamdani Hamdani, Rahmaddeni Rahmaddeni, Junadhi Junadhi, Muhammad 225-237 Bambang Firdaus, Irwanda Syahputra, Yuda Irawan PDF PDF Pattarawadee Poolperm #### Effect of Zinc Addition in Copper to Structure, Hardness, Corrosion, and Antibacterial Activity Lisa Samura, Mustamina Maulani, Cahaya Rosyidan, Kartika Fajarwati Hartono, Suryo Prakoso, Evi Ulina Margareta 465-479 Situmorang, Daniel Edbert, Bambang Soegijono, Muhammad Yunan Hasbi, Ferry Budhi Susetyo Proximity Index Value for Supplier Selection Using Compromise Weighting of Stepwise Weight Assessment Ratio Analysis and The Method of Removal Effects Of Criteria: A Case Study in Indonesian Leather Industry Agus Ristono 480-498 Development of A Low-Cost Analyzer for Misalignment Identification Based on Vibration and Current Analysis Dedi Suryadi, Acraz M Bahrum, Novalio Daratha, Radzi Ambar 499-507 Development of Potato Nano Carbon as Electrode for Supercapacitors Achieves Green-Sustainable Development Goals Indri Dayana, Dadan Ramdan, Moranain Mungkin, Habib Satria, Muhammad Fadlan Siregar, Martha Rianna, Juliaster 508-518 Marbun , Siti Utari Rahayu Supply Chain Conceptual Model to Optimize a Local Food Agroindustry from the Coconut Milk Processing Meilizar Meilizar, Rika Ampuh Hadiguna, Santosa Santosa, Nofialdi Nofialdi 519-536 Innovative Tech-Savvy Education: Designing a Smart Assessment System Syaiful Islami, Ambiyar Ambiyar, Sukardi Sukardi, Anggi Agni Zaus, Anggun Agni Zaus, Mahesi Agni Zaus 537-549 #### https://journal.yrpipku.com/index.php/jaets/article/view/6098/3705 #### Journal of Applied Engineering and Technological Science Vol 6(1) 2024: 465-479 ## EFFECT OF ZINC ADDITION IN COPPER TO STRUCTURE, HARDNESS, CORROSION, AND ANTIBACTERIAL ACTIVITY Lisa Samura^{1*}, Mustamina Maulani², Cahaya Rosyidan³, Kartika Fajarwati Hartono⁴, Suryo Prakoso⁵, Evi Ulina Margareta Situmorang⁶, Daniel Edbert⁷, Bambang Soegijono⁸, Muhammad Yunan Hasbi⁹, Ferry Budhi Susetyo¹⁰ Department of Petroleum Engineering, Universitas Trisakti, 11440, Indonesia 12345 Department of Physiology School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, 14440, Indonesia⁶ Department of Microbiology, Atma Jaya Catholic University of Indonesia, 14440, Indonesia⁷ PROUDTEK Lab., Department of Geoscience, Universitas Indonesia, 16424, Indonesia⁸ Research Center for Metallurgy – National Research and Innovation Agency, 15314, Indonesia⁹ Department of Mechanical Engineering, Universitas Negeri Jakarta, 13220, Indonesia¹⁰ lisa.samura@trisakti.ac.id¹ Received: 12 September 2024, Revised: 17 November 2024, Accepted: 19 November 2024 *Corresponding Author #### **ABSTRACT** Brass (CuZn) is widely used today due to better mechanical, thermal, and chemical properties. The present research fabricated CuZn alloy by adding various Zn (6, 9, and 12 wt.%) to the Cu using gravity casting. Casts CuZn alloy by adding various Zn to the Cu to investigate optimum composition were resulting highest inhibited of bacterial activity. In addition, the structure, hardness, and electrochemical behavior of the alloy were also investigated using XRD, Vickers hardness, and potentiostat equipment. XRD confirmed that CuZn alloy has an alpha phase, and a FCC crystal structure. The rise of the Zn content in the alloy led to an increase in crystallite size, a decrease in the hardness and a shift to a more negative OCP potential at 1200 s measurement. Enhancing the Zn content to 9 wt.% in the alloy lead to decrease the corrosion rate. Moreover, 24-hour post-contact observation found that the sample places removed remained clear of bacteria. The Cu6Zn sample successfully inhibited the growth of Escherichia coli in the 3rd hour, while Staphylococcus aureus was 100 % reduced in the 7th hour. The Cu6Zn sample could be used as an alternative material for medical equipment in ambulances. Keywords: XRD, Vickers, Electrochemical Measurement, Staphylococcus Aureus, Escherichia Coli #### 1. Introduction Brass (CuZn) is an alloy widely used in the national defense, oil and gas industries, and health because it has better mechanical properties, thermal conductivity, and corrosion resistance (Bhavsar & Bali, 2023; Wang et al., 2023; Widyastuti et al., 2023). CuZn alloys for medical equipment in transportation such as ambulances need to consider two parameters: corrosion resistance and antibacterial characteristics. Commonly NaCl media was used to investigate corrosion for ambulance equipment. This condition due to ambulance equipment commonly exposure from medical patients eccrine sweat and saline-infused (Baker & Wolfe, 2020; Tayyab et al., 2021). Furthermore, some studies found that after cleaning the ambulance, 35.37 % of bacterial contaminants were still seen (Syamsuir et al., 2023). Viegas et al. found *Staphylococcus aureus* was detectable on firefighter's ambulance equipment (Viegas et al., 2021). *Staphylococcus aureus* is a type of bacteria that could cause skin disease and is hard to treat with traditional antibiotics. *Staphylococcus aureus* bacteria tend to have methicillin resistance. According to Tajik et al., 38.4 % of *Staphylococcus aureus* methicillin resistant was found in Tehran community (Tajik et al., 2020). Moreover, this bacteria also could contaminate orthopedic implants and cause serious infections (Pietrocola et al., 2022). Several researchers were interested in investigating the corrosion behavior of CuZn alloy in NaCl medium (Abed & Dawood, 2022; Chen et al., 2024; Gao et al., 2021; Yin et al., 2021). Abed and Dawood investigated the corrosion behavior of Cu40Zn alloy in 3.5% NaCl and found a corrosion rate of around 0.037 mmpy (Abed & Dawood, 2022). Yin et al. investigated the corrosion behavior of Cu alloy in NaCl medium were immersed in different times. More time is immersed, resulting in more corrosion resistance of Cu (Yin et al., 2021). Chen et al. investigated Cu alloy in NaCl medium and found Cu potential around -0.305 V vs SCE and Zn potential around -1.165 V vs SCE (Chen et al., 2024). Gao et al. found that a reduction in thickness (50 to 60 %) of CuZn using cold rolling resulted in a significant decrease in corrosion current from 4.824 to 1.804 μ A/cm² (investigating in 3.5 % NaCl) (Gao et al., 2021). Moreover, aluminum (Al) alloy widely used in transportation sector such as ambulance (Blanco et al., 2022; Vandersluis et al., 2020). Liu et al. have found Al alloy corrosion current between 4.8685.251 A/cm² in a 3.5% NaCl medium (Liu et al., 2020). Comparing the studies of Liu et al. and Gao et al., Al alloy has a higher corrosion current than CuZn (Gao et al., 2021; Liu et al., 2020). Corrosion current significantly influences the corrosion rate, and a rise in the corrosion current would enhance the corrosion rate. Recently, researchers have been interested in investigating CuZn alloy for medical applications (Azizian et al., 2024; Riaz et al., 2024; Sabbouh et al., 2023). Azizian et al. investigated CuZn alloys microstructure, mechanical properties and cytotoxicity for cardiovascular applications (Azizian et al., 2024). Riaz et al. investigated the structural and biological properties of CuZn alloy for orthopedic applications (Riaz et al., 2024). Moreover, Sabbouh et al. did the sonification of CuZn in an alkali solution to enhance the antibacterial inhibition zone (Sabbouh et al., 2023). Moreover, Syamsuir et al. have investigated the antibacterial activity of *Staphylococcus aureus* by presenting a Cu layer for ambulance equipment (Syamsuir et al., 2023). The killing mechanism of bacterial activity inseparable from the ions released by the alloy (Qu et al., 2020). Cu²⁺ ions could be adsorbed on the cytoplasmic membrane surfaces, then penetrate the bacteria, react with sulfhydryl groups, and cause the cell to die (Zeng et al., 2022). The released Zn²⁺ ions could penetrate the cell membrane and cause cell death (Du et al., 2021). Zhang et al. have stated that Cu²⁺ and Zn²⁺ ions could act as antibacterial agents and inhibit *Staphylococcus aureus* growth (Zhang et al., 2021). According to the literature review, research on CuZn alloys with Zn compositions in the range of 6–12 wt.%
for medical transportation purposes has not been thoroughly investigated. As mentioned above, the killing mechanism of bacterial activity depend on Cu and Zn ions. CuZn alloy can transform into Cu and Zn ions. Therefore, the present research casts CuZn alloy by adding various Zn to the Cu to investigate optimum composition, resulting in a higher killing mechanism of bacterial activity. Moreover, different alloy compositions would result in different electrochemical behavior and mechanical properties. The present study investigated structure, hardness, electrochemical behavior, and antibacterial activity using X-ray diffraction (XRD), Vickers hardness equipment, potentiostat, and digital camera. #### 2. Literature Review Many techniques are used to make CuZn alloys, including gravity and investment casting (Hendrawan et al., 2021; Ziat et al., 2020). Gravity casting is simple, inexpensive, and can rapidly fill complex geometry (Huang et al., 2024; Nuryadi et al., 2020). Moreover, in the fabrication of CuZn alloys, one thing needs to be considered to produce specific properties, namely alloy composition. Researchers focused on adding various Zn compositions onto Cu for different purposes. Strzępek et al. investigated the mechanical properties of Cu and alpha brass (Cu2.5Zn and Cu6.5Zn) wire (□ 3.8 mm). Increased Zn content causes increases in ultimate tensile strength, yield strength and hardness (Strzępek et al., 2019). Situmorang et al. fabricated Cu with various Zn additions (10, 20, 38, and 45 wt.%) and found that the higher the Zn composition, the higher the antibacterial properties (Situmorang et al., 2019). Iqbal et al. melted Cu28.7Zn using a furnace and cast to investigate hardness and morphology (Iqbal et al., 2021). Shahriyari et al. added Zn (5, 15, 20, and 30 wt.%), increasing the hardness due to the alloy's rise in the Zn content (Shahriyari et al., 2022). Akhyar et al. melted Cu28.7Zn using a gas furnace and cast to investigate the tensile strength (Akhyar et al., 2023). Morath et al. have created Zn0.8Cu and Zn1.5Cu using casting methods to investigate the biological aspect of arterial implants (Morath et al., 2024). Azizian et al. have added Cu with compositions 1, 2, and 5 wt.% to CuZn alloy by melting in the induction furnace to investigate microstructure, mechanical properties, and cytotoxicity for cardiovascular application (Azizian et al., 2024). Generally, a CuZn alloy with a Zn composition of less than 37 wt.% would produce a single alpha phase with an FCC crystal structure (Clement & Auger, 2023; Mousavi et al., 2020). #### 3. Research Methods #### 3.1 Material Preparation Cu ingot (98.798 %) and Zn powder (99 %) were melted and cast with the alloy composition CuxZn (x=0, 6, 9, and 12 wt.%, namely as Cu, Cu6Zn, Cu9Zn, and Cu12Zn, respectively) and then confirmed the formed alloy using XRF (Table 1). Before melting was conducted, the ingot and the apparatus, such as the crucible, were cleaned using water to avoid impurities and then dried. The Cu ingot was first filled into a silicon carbide crucible (3kg) and then inserted into a muffle furnace. Melting was carried out in a crucible at 1100 °C under atmospheric pressure. After the Cu has melted, remove it from the muffle furnace, mix it with Zn powder, stir it manually, and pour it into a permanent mold. For comparison, Cu ingot was melted and poured into a permanent mold without Zn addition. The as-cast ingots were cut for further characterization, such as XRD, hardness, electrochemical measurement, and antibacterial activity observation. | Table 1 –
various | | Cu | Zn | | Si | P | | Chemical composition of casting samples. Element (wt.%) | |----------------------|--------|--------|--------|-------|-------|-------|-------|---| | | Sample | | | | | | | • , | | | | | | Al | | | Fe | | | | Cu | 98.798 | - | 0.135 | 0.444 | 0.384 | 0.238 | | | | Cu6Zn | 92.308 | 6.384 | 0.135 | 0.444 | 0.384 | 0.345 | | | | Cu9Zn | 89.228 | 9.497 | 0.135 | 0.444 | 0.384 | 0.312 | | | | Cu127n | 87.075 | 11.557 | 0.135 | 0.444 | 0.384 | 0.405 | | #### 3.2 XRD Measurement XRD was measured using the PANalytical (Cu K \Box 1 \Box =1.5405980) apparatus. XRD was scanned from 20 to 100 \Box , using step size 0.0217 \Box . The Highscore software was used to refine and collect peak, phase and crystallographic parameters of as-cast samples. By using that software, full width at half maximum (FWHM) are also found. FWHM data is used to calculate crystallite size. #### 3.3 Hardness Measurement Before testing, samples with $20\square 20\square 6$ mm dimensions were polished using silicon carbide up to #3000 grit. Afterward, the polished sample was cleaned using water, followed by alcohol, and then dried using drier equipment. The hardness test was conducted using the Vickers method. An FV-300e hardness test was performed on top of various samples using 1 kg of load. Ten repeatable measurements were conducted. #### 3.4 Electrochemical Measurement Two electrochemical measurements were conducted in the present research, such as open circuit potential (OCP) and Linear sweep voltammetry (LSV), using Digi-Ivy (DY2311) potentiostat in 0.9 % NaCl at room temperature. OCP was scanned until 1200 s using a sampling scan rate of 0.02 s, while LSV was conducted using a scan rate of 1 mV/s. Cu/CuZn samples are used as the working electrode, platinum wire as the counter electrode, and Ag/AgCl as the reference electrode. LSV data was examined using the Tafel extrapolation method to see corrosion potential (Ecorr) and current density (icorr). The corrosion rate could be found by inserting icorr in the following equation (Soegijono et al., 2020). Corrosion rate $$(mmpy) = C \frac{M \times icorr}{\rho \times n}$$ (1) Where C is corrosion constant (3.27 mmpy), M is atomic weight (g/mol), \square is material density (g/cm³), and n is the number of electrons involved. #### 3.5 Antibacterial Activity Observation The sample dimension used for antibacterial activity is 20 \square 20 \square 6 mm. Before testing, samples were polished using silicon carbide up to #3000 grit. The experimental procedure for antibacterial activity is similar to that of the previous report (Syamsuir et al., 2023). Moreover, the recent study uses *Staphylococcus aureus* ATCC 25923 for Direct contact kill assay (24 hours) and Fluid contact assay (8 hours). In comparison, *Escherichia coli* 25922 was also used in the present study. Afterward, documentation was captured using a digital camera. In addition, 24-hour post-contact observation and Fluid contact test were also captured using a digital camera. #### 4. Results and Discussions #### 4.1 XRD The diffraction pattern of Cu/CuZn with (111), (200), (311), and (222) planes can be seen in Figure 1. The four diffraction patterns match the alpha phase, which is shown to align with another study (Heidarzadeh et al., 2022). The acquired XRD data was then analyzed using Highscore software, and the parameters are listed in Table 2. All samples had a face-centered cubic (FCC) crystal structure, indicating that the Cu and Zn atoms dissolve into one another. According to Jinlong et al., the FCC quantity of surface energy is (111)>(001) >(110), and the FCC sample with the (111) plane has the lowest corrosion rate (Jinlong et al., 2016). Moreover, the FCC sample with the preferred orientation of the (111) plane has the highest surface atomic density (Soegijono et al., 2020). Fig. 1. XRD of various casting samples. Table 2 - Crystallographic parameters of various casting samples. | | | Sample | | | |-----------|----|--------|-------|--------| | Parameter | | | | | | | Cu | Cu6Zn | Cu9Zn | Cu12Zn | | Crystal structure | | | FCC | | |--------------------------------|--------|--------|--------|--------| | Lattice constant a = b = c (Å) | 2.964 | 8.929 | 2.981 | 2.964 | | Cell volume (ų) | 26.03 | 90 | 26.49 | 26.05 | | d-spacing (Å) | 1.69 | 1.18 | 1.69 | 2.07 | | Crystallite Size (nm) | 227.20 | 109.95 | 204.95 | 316.26 | | Micro strain | 0.37 | 0.53 | 0.16 | 0.32 | Presenting Zn in the alloy reduces crystallite size from 227.20 to 109.95 nm and increases Zn content from 6 to 12 wt.%, leading to an increase in crystallite size from 109.95 to 316.26 nm. This behavior is similar to Özdemir and Karahan's study that showed Zn in the alloy leads to decreased crystallite size, and an increase in Zn content in the alloy leads to increased crystallite size (Özdemir & Karahan, 2014). Moreover, the microstrains of the as-cast sample are independent of Zn content, which perfectly agrees with Karahan and Özdemir's study ((Karahan & Özdemir, 2014). The smallest microstrain is seen in the Cu9Zn sample. #### 4.2 Hardness Figure 2 shows the average hardness of various casting samples. Nikhil et al. have found that pure Cu has a hardness of 140 HV when treated at 400 and 600 \Box C and then held for two hours, followed by quenching in tap water, resulting in a hardness of 100 and 60 HV (Nikhil et al., 2021). The higher heat treatment temperatures led to a decrease in the hardness of the pure Cu. Therefore, the hardness of Cu may vary depending on heat treatment. In the present study, Cu re-casting has a hardness of 74.54 HV. Fig. 2. Average hardness of various casting samples. According to Figure 2, it can be seen that an increase in Zn content led to a decrease in the hardness. Another research study found that Cu (as-cast) has a hardness of around 100 HV, while Cu15 Zn (as-cast) has a hardness of 75 HV (Ezequiel et al., 2024). Nnakwo et al. also found that increased Zn content in the Cu alloy leads to decreased hardness due to increased in grain size and solid solution region (Nnakwo et al., 2021). According to a study by Qu et al. and García-Mintegui et al., pure Zn hardness is between 41-42 HV (García-Mintegui et al., 2021; Qu et al., 2020). Therefore, it could be concluded that Zn in the alloy leads to decreased hardness
due to Zn hardness less than Cu. Several researchers correlated measured hardness to crystallite size (Augustin et al., 2016; Syamsuir et al., 2023). Augustin et al. have found an increase in Cu's crystallite size, promoting a decrease in scratch and micro-hardness (Augustin et al., 2016). Syamsuir et al. found a decrease in Cu's crystallite size, leading to an increase in hardness (Syamsuir et al., 2023). Comparing Table 2 with Figure 2, it can be seen that an increase in the Zn content led to an increase in crystallite size and a decrease in the hardness. On the contrary, while as-cast samples do not form an alloy (Cu), the resulting hardness is not aligned with the crystallite size. It seems that it cannot compare the crystallite size were found with measured hardness between alloy (CuZn) and un-alloy (Cu) material. Several transportation sectors, such as ambulance equipment, are made from Al alloy (Blanco et al., 2022; Vandersluis et al., 2020). According to Hajizadeh et al., Al alloy hardness is between 32-52 HV (Hajizadeh et al., 2017). Therefore, all specimens have hardness still higher than Al alloy. #### **4.3 OCP** Figure 3 shows the OCP measurement result of various casting samples in 0.9 % NaCl at room temperature. Generally, increased Zn content in the alloy promoted more negative potential, which perfectly agrees with the Cocco et al. study (Cocco et al., 2016). Dridi et al. have found that E_{OCP} CuZn30 and CuZn39 are -0.578 and -0.604 V/MSE at 3 % NaCl, which means an increase in the Zn promoted to more negative potential (Dridi et al., 2020). Cu, Cu6Zn, Cu9Zn, and Cu12Zn samples have E_{OCP} potential at 1200 s measurement -0.014, -0.023, -0.027, and -0.032 V vs Ag/AgCl, respectively. Fig. 3. OCP measurement of various casting samples. According to Figure 3, Cu, Cu6Zn, and Cu9Zn samples are steady at initial measurements until 1200 s, indicating that the protective layer formed has good protection. In contrast, the Cu12Zn sample is steady at initial measurements until 600 s, then moves in a more negative direction. These phenomena indicated that the formed protective layer had initially dissolved at 600 s; therefore, the measurement continuously moved forward in a negative direction until the measurement reached 1200 s. #### **4.4 LSV** Eccrine sweat and saline-infused for humans are nearly 0.9 % of NaCl (Bond & Lieu, 2014; Tayyab et al., 2021). Therefore, LSV measurement was conducted in 0.9 % NaCl at room temperature. Luo et al. found Cu_2O crystalline growth on the Cu surface when exposed to 0.9 % NaCl, while when exposed to pure water, Cu_2O crystalline was not seen (Luo et al., 2020). Commonly, Cu_2O crystallines are formed, which is preceded by the formation of CuCl when the specimen is tested in a chloride solution. Moreover, Zhang et al., in their study, found ZnO and Zn₅Cl₂(OH)₈□H₂O as corrosion products on top of Cu40Zn surfaces in a chloride environment (Zhang et al., 2016). The reaction of Cu in chloride solution is as follows (Milošev et al., 2024). $$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$ (2) $$Cu + 2Cl^{-} \leftrightharpoons CuCl_{2}^{-} + e^{-}$$ (3) $$Cu + Cl^- \leftrightharpoons CuCl + e^-$$ (4) $$CuCl + Cl^- \leftrightharpoons CuCl_2^-$$ (5) $$Cu = Cu^+ + e^- \tag{6}$$ $$Cu^+ + 2Cl^- \leftrightharpoons CuCl_2^-$$ (7) The reaction of Zn in chloride solution is as follows (Milošev et al., 2024). $$Zn \to Zn^{2+} + 2e^- \tag{8}$$ $$Zn^{2+} + 2OH^{-} \rightarrow Zn(OH)_{2} \rightarrow ZnO + H_{2}O$$ (9) $$5Zn^{2+} +8OH^{-} +2Cl^{-} +H_{2}O \longrightarrow Zn_{5}(OH)_{8}Cl_{2} \cdot H_{2}O$$ (10) LSV measurement results in 0.9 % NaCl can be seen in Figure 4. Fig. 4. LSV scans result of various casting samples. According to Figure 4, corrosion Ecorr and icorr can be found using the Tafel extrapolation method. Moreover, the corrosion rate could be calculated by inserting icorr into expression (1). Table 3 presented Ecorr, icorr, and the corrosion rate of various casting samples. It appears Ecorr is independent of Zn addition; however, Zn is dependent on icorr and corrosion rate (except for the Cu12Zn sample). This behavior is probably due to a protective layer that was formed. Compared to the OCP result, it can be seen that the Cu12Zn sample continuously moves forward in a negative direction from 600 until 1200 s of measurement. Therefore, that sample has a higher icorr and corrosion rate. Table 3 - Corrosion parameters of various casting samples. | Sample name | Ecorr (V) vs Ag/AgCl | Icorr (A/cm²) | Corrosion rate (mmpy) | |-------------|----------------------|-------------------------|-------------------------| | Cu | -0.241 | 4.42 □ 10 ⁻⁶ | 5.13 □ 10 ⁻² | | Cu6Zn | -0.220 | 3.33 □ 10 ⁻⁶ | 3.86 □ 10-2 | | Cu9Zn | -0.304 | 2.15 □ 10 ⁻⁶ | 2.49 □ 10 ⁻² | | Cu12Zn | -0.175 | 6.19 □ 10 ⁻⁶ | 7.18 🛘 10 ⁻² | Qu et al. have found that an increase in Zn content led to an increase in corrosion resistance, which perfectly agrees with the present study (except for Cu12Zn) (Qu et al., 2020). Milošev et al. investigated Cu, Cu10Zn, Cu40Zn, and Zn in 3 % NaCl and found icorr after stabilized at 1 hour around 1.573, 1.456, and 2.114, and 5.21 μ A/cm² respectively (Milošev et al., 2024). According to equation (1), icorr strongly influences the corrosion rate. The more icorr, the higher the corrosion rate. Moreover, a limitation in Zn content in the Cu alloy could influence the corrosion resistance. Presenting the Zn content \Box 11 wt.% in the alloy could enhance the corrosion resistance; however, Zn of more than 10 wt.% could decrease corrosion resistance (Milošev et al., 2024). According to Table 2, the Cu9Zn sample has the lowest microstrain than others. The measured microstrain could be associated with the sample's crystal defect (Soegijono et al., 2020). Based on Table 2, the Cu9Zn sample has the lowest microstrain, which confirms that the sample has the lowest corrosion rate. Moreover, the FCC sample with the preferred orientation of the (111) plane could offer a lower corrosion rate due to the highest surface atomic density (Jinlong et al., 2016; Soegijono et al., 2020). Compared to other samples, the Cu9Zn sample has the higher preferred orientation of the (111) plane. Even though the (111) plane of the Cu sample is the highest. Unfortunately, the (220) and (200) planes are still present and relatively high. #### 4.5 Antibacterial Activity Figure 5 shows the direct contact kill of *Staphylococcus aureus* and *Escherichia coli* after 24 hours of incubation. The present study focused on *Staphylococcus aureus*, but *Escherichia coli* was also used for comparison. There is no diffusion in the sample; therefore, the inhibition zone could not be seen. Fig. 5. Antibacterial activity test using *Staphylococcus aureus* (left) and *Escherichia coli* (right) (a) Cu, (b) Cu6Zn, (c) Cu9Zn, and (d) Cu12Zn. Antibacterial activity after 24 hours of post-contact with various casting samples using *Staphylococcus aureus* and *Escherichia coli* can be seen in Figure 6. The removed sample places remain clear (with no regrowth) from bacterial activity. The antibacterial behavior was significantly influenced by Cu or Zn ions (Qu et al., 2020). Villapún et al. found that releasing Cu ions leads to the highest killing activity of *Staphylococcus aureus* (Villapún et al., 2016). Excess in the Cu ion could be bacteriostatic (Sabbouh et al., 2023). Moreover, Cu ions could be adsorbed on the cytoplasmic membrane surfaces, then penetrate the bacteria, react with sulfhydryl groups and cause the cell to die (Zeng et al., 2022). Furthermore, Cu ions could form hydroxyl groups in the presence of oxygen in nature, which could destroy cell membranes (Dou et al., 2022). Hutchings et al. stated that Zn²⁺ successfully inhibits the growth of *S. epidermidis* (Hutchings et al., 2021). This behavior is associated with the generation of reactive oxygen or the formation of (Zhang et al., 2021). Fig. 6. Antibacterial activity after 24 hours of post-contact (regrowth assessment) towards *Staphylococcus aureus* (left) and *Escherichia coli* (right) (a) Cu, (b) Cu6Zn, (c) Cu9Zn, and (d) Cu12Zn Figure 7 shows the fluid contact test of *Staphylococcus aureus* and *Escherichia coli*. The orientation of the test materials is mapped within the yellow box. For the Cu6Zn sample, *Escherichia coli* was killed on the 3rd hour. However, there is no significant reduction within the fluid because there are no diffusible materials. Also, there is no visible growth after 3rd hour for the fluid in contact with the metal. Fig. 7. Fluid contact test of Staphylococcus aureus and Escherichia coli Moreover, it should be noted that the reduction of the colony is significant in the 7th hour for *Staphylococcus aureus* (blue arrow), but for *Escherichia coli*, the inhibition of *Escherichia coli* growth is shown within the 3rd hour of contact (green arrow), for Cu6Zn sample. The reduction of colonies is significant on the surface of the metal. While on the remaining fluid, the reduction is insignificant until 8 hours. This behavior is because *Staphylococcus aureus* and *Escherichia coli* have different membrane structures and thick cell walls, therefore could inhibit ion exchange and restrain the antibacterial effect of Cu and or Zn ions (Di et al., 2022). Cu killing is more effective in Gram-negative bacteria (e.g., *Escherichia coli*) because peptidoglycan affects the cell's susceptibility. The thicker the peptidoglycan layer, the harder it became for the Cu ions to reach the membrane (Soltani et al., 2020; Xhafa et al., 2023). Therefore, *Escherichia coli* was killed in the 3rd hour. Another reason Cu6Zn has better antibacterial performance than others is probably due to its smaller crystallite size. Researchers found that smaller crystallite sizes promote the enhancement of antibacterial effects (Syamsuir et al., 2023). This behavior is attributed to an increase in surface area due to the crystallite size (Sangeetha et
al., 2015). The Cu6Zn sample could be used as an alternative material for medical equipment in ambulances. #### 5. Conclusion CuZn has been successfully fabricated. XRD confirmed that CuZn alloy has a single alpha phase with an FCC crystal structure. The rise of the Zn content in the alloy led to a decrease in the hardness due to an increase in crystallite size and led to a shift to more negative OCP potential at 1200 s measurement. Moreover, the rise of the Zn content to 9 wt.% decreased the corrosion rate. It appears there is a limitation in Zn content in the copper alloy that influences the corrosion rate, as shown when Zn content around 12 wt. % is promoted to increase the corrosion rate. Antibacterial activity observation found that all samples had no diffusion. Moreover, 24-hour post-contact observation found that sample places removed from the sample remained clear of bacteria. The Cu6Zn has better antibacterial performance than others due to the smallest crystallite size. According to the fluid contact test, the reduction of the colony of *Staphylococcus aureus* is significant in the 7th hour. The inhibition of *Escherichia coli* growth is also shown within the 3rd hour of contact. This behavior is because *Staphylococcus aureus* and *Escherichia coli* have different membrane structures and thick cell walls, therefore, could inhibit ion exchange and restrain the antibacterial effect of Cu and or Zn ions. #### Acknowledgement This research is under financial support from the Ministry of Education, Culture, Research and Technology Indonesia with contract number 832/LL3/AL.04/2024 and 171/A/LPPM-P/USAKTI/VI/2024. #### References Abed, K. M., & Dawood, N. M. (2022). Impacts of Tin and Germanium on Corrosion and Erosion-Corrosion Behavior of 60Cu-40Zn alloys. *AIP Conference Proceedings*, 2660, 020131. https://doi.org/10.1063/5.0108474 Akhyar, Iqbal, Ali, N., & Husin, H. (2023). Effect of variations in pouring temperature on tensile strength of CuZn cast alloys. *Materials Letters: X, 17,* 100182. https://doi.org/10.1016/j.mlblux.2023.100182 Augustin, A., Huilgol, P., Udupa, K. R., & Bhat K, U. (2016). Effect of current density during electrodeposition on microstructure and hardness of textured Cu coating in the application of antimicrobial Al touch surface. *Journal of the Mechanical Behavior of Biomedical Materials*, *63*, 352–360. https://doi.org/10.1016/j.jmbbm.2016.07.013 Azizian, F., Naffakh-Moosavy, H., & Bagheri, F. (2024). The role of Cu addition in the metallurgical features, mechanical properties, and cytocompatibility of cardiovascular stents biodegradable Zn-based alloy. *Intermetallics*, *164*, 108106. https://doi.org/10.1016/j.intermet.2023.108106 Baker, L. B., & Wolfe, A. S. (2020). Physiological mechanisms determining eccrine sweat composition. *European Journal of Applied Physiology*, *120*(4), 719–752. https://doi.org/10.1007/s00421-020-04323-7 Bhavsar, V., & Bali, S. C. (2023). Effect of Compressed Natural Gas (CNG) on corrosion behaviour of brass valve of CNG cylinder. *Engineering Failure Analysis*, *149*, 107268. https://doi.org/10.1016/j.engfailanal.2023.107268 Blanco, D., Mar, E., & Mar, R. (2022). Titanium Alloys Applied to the Transport Sector : A Review. *Metals*, *12*(9), 1–21. https://doi.org/10.3390/met12010009 Bond, J. W., & Lieu, E. (2014). Electrochemical behaviour of brass in chloride solution concentrations found in eccrine fingerprint sweat. *Applied Surface Science*, *313*, 455–461. https://doi.org/10.1016/j.apsusc.2014.06.005 Chen, L., Ma, R., Dong, J., Chen, S., Li, C., Ma, C., Bian, G., & Wang, C. (2024). A multi-ion transport model of Cu-Zn-Fe trimetallic couple in near-neutral NaCl solution. *Corrosion Science*, *239*, 112414. https://doi.org/10.1016/j.corsci.2024.112414 Clement, A., & Auger, T. (2023). An EAM potential for α -brass copper-zinc alloys: application to plasticity and fracture. *Modelling and Simulation in Materials Science and Engineering*, 31(1), 015004. https://doi.org/10.1088/1361-651X/aca4ec Cocco, F., Fantauzzi, M., Elsener, B., & Rossi, A. (2016). Dissolution of brass alloys naturally aged in neutral solutions-an electrochemical and surface analytical study. *RSC Advances*, 6(93), 90654–90665. https://doi.org/10.1039/c6ra18200c Di, T., Xu, Y., Liu, D., & Sun, X. (2022). Microstructure, Mechanical Performance and AntiBacterial Activity of Degradable Zn-Cu-Ag Alloy. *Metals*, *12*(9), 1–13. https://doi.org/10.3390/met12091444 Dou, X., Chen, Y., & Shi, H. (2022). CuBi2O4/BiOBr composites promoted PMS activation for the degradation of tetracycline: S-scheme mechanism boosted Cu2+/Cu+ cycle. *Chemical* Engineering Journal, 431(P2), 134054. https://doi.org/10.1016/j.cej.2021.134054 Dridi, A., Dhouibi, L., Hihn, J. Y., Berçot, P., Rezrazi, E. M., Sassi, W., & Rouge, N. (2020). Analytical Study of CuZn 30 and CuZn 39 Brass Surfaces in 3% NaCl Solution Under Polarization. Chemistry Africa, 3(3), 735-747. https://doi.org/10.1007/s42250-02000182-z Du, M., Zhao, W., Ma, R., Xu, H., Zhu, Y., Shan, C., Liu, K., Zhuang, J., & Jiao, Z. (2021). Visible-light-driven photocatalytic inactivation of S. aureus in aqueous environment by hydrophilic zinc oxide (ZnO) nanoparticles based on the interfacial electron transfer in S. aureus/ZnO composites. *Journal of Hazardous Materials*, 418, 126013 Contents. Ezequiel, M., Proriol Serre, I., Auger, T., Héripré, E., Hadjem-Hamouche, Z., & Perriere, L. (2024). The liquid metal embrittlement of a reactive system at room temperature: αbrasses in contact with the liquid eutectic Ga-In. *Engineering Failure Analysis*, *164*, 108694. https://doi.org/10.1016/j.engfailanal.2024.108694 https://doi.org/10.1016/j.jhazmat.2021.126013 Gao, P., Ren, Y., Qian, S., He, Y., & Shen, D. (2021). Evolution of microstructure and electrochemical corrosion behavior of CuZn-based alloys induced by cold rolling. Journal of Materials Research and Technology, 15, 360–368. https://doi.org/10.1016/j.jmrt.2021.08.035 García-Mintegui, C., Córdoba, L. C., Buxadera-Palomero, J., Marquina, A., Jiménez-Piqué, E., Ginebra, M. P., Cortina, J. L., & Pegueroles, M. (2021). Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. *Bioactive Materials*, *6*(12), 4430–4446. https://doi.org/10.1016/j.bioactmat.2021.04.015 Hajizadeh, K., Ejtemaei, S., & Eghbali, B. (2017). Microstructure, hardness homogeneity, and tensile properties of 1050 aluminum processed by constrained groove pressing. *Applied* *Physics A: Materials Science and Processing, 123*(8), 1–9. https://doi.org/10.1007/s00339-017-1123-y Heidarzadeh, A., Javidani, M., & St-Georges, L. (2022). Crystallographic Orientation Relationship between α and β Phases during Non-Equilibrium Heat Treatment of Cu-37 wt. % Zn Alloy. *Crystals*, 12(1), 97. https://doi.org/10.3390/cryst12010097 Hendrawan, C. N., Setyani, A., Pertiwi, D. R. K., & Sofyan, B. T. (2021). Effect of 9wt% Mn addition on cold rolling and annealing behaviour of Cu-31Zn alloy. *Materials Today:* *Proceedings*, 46, 3346–3351. https://doi.org/10.1016/j.matpr.2020.11.476 Huang, S. J., Li, C., Feng, J. H., Selvaraju, S., & Subramani, M. (2024). Mechanical and Corrosion Tests for Magnesium–Zinc/Ti-6Al-4V Composites by Gravity Casting. *Materials*, *17*(8), 1836. https://doi.org/10.3390/ma17081836 Hutchings, C., Yair, Z. P., Reifen, R., & Shemesh, M. (2021). Antimicrobial effect of zn2+ ions governs the microbial quality of donor human milk. Foods, 10(3), 1–12. https://doi.org/10.3390/foods10030637 Iqbal, Ali, N., Husin, H., Akhyar, Khairil, & Farhan, A. (2021). Differences in Pour Temperature Affect Hardness Properties of CuZn Brass Alloy through Metal Casting. *IOP Conference Series: Materials Science and Engineering*, 1082(1), 012001. https://doi.org/10.1088/1757-899x/1082/1/012001 Jinlong, L., Tongxiang, L., & Chen, W. (2016). Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel. *Journal of Solid State Chemistry*, 240, 109–114. https://doi.org/10.1016/j.jssc.2016.05.025 Karahan, I. H., & Özdemir, R. (2014). Effect of Cu concentration on the formation of Cu 1-x Zn x shape memory alloy thin films. *Applied Surface Science*, *318*, 100–104. https://doi.org/10.1016/j.apsusc.2014.01.119 Liu, P., Hu, J. ying, Li, H. xue, Sun, S. yu, & Zhang, Y. bin. (2020). Effect of heat treatment on microstructure, hardness and corrosion resistance of 7075 Al alloys fabricated by SLM. Journal of Manufacturing Processes, 60, 578–585. https://doi.org/10.1016/j.jmapro.2020.10.071 Luo, J., Hein, C., Pierson, J. F., & Mücklich, F. (2020). Sodium chloride assists copper release, enhances antibacterial efficiency, and introduces atmospheric corrosion on copper surface. *Surfaces and Interfaces*, *20*, 100630. https://doi.org/10.1016/j.surfin.2020.100630 Milošev, I., Taheri, P., Kapun, B., Kozlica, D. K., Mol, A., & Kokalj, A. (2024). The effect of molecular structure of imidazole-based compounds on corrosion inhibition of Cu, Zn, and Cu-Zn alloys. *Corrosion Science*, 127870. https://doi.org/10.1016/j.corsci.2024.112328 Morath, L., Rahim, S. A., Baker, C., Anderson, D., Hinds, M., Sikora-Jasinska, M., Oujiri, L., Leyssens, L., Kerckhofs, G., Pyka, G., Oliver, A. A., Drelich, J. W., & Goldman, J. (2024). The biological effects of copper alloying in Zn-based biodegradable arterial implants. *Biomaterials Advances*, *November*, 124658. https://doi.org/10.1016/j.bioadv.2024.214112 Mousavi, S. E., Sonboli, A., Naghshehkesh, N., Meratian, M., Salehi, A., & Sanayei, M. (2020). Different behavior of alpha and beta phases in a Low Stacking Fault Energy copper alloy under severe plastic deformation. *Materials Science and Engineering: A*, 788, 139550. https://doi.org/10.1016/j.msea.2020.139550 Nikhil, Singh, M. K., Ji, G., & Prakash, R. (2021). Investigation on the effects of cooling rate on surface Texture, corrosion
behaviour and hardness of pure copper. *Materials Today:* Proceedings, 47(19), 6693–6695. https://doi.org/10.1016/j.matpr.2021.05.115 Nnakwo, K. C., Osakwe, F. O., Ugwuanyi, B. C., Oghenekowho, P. A., Okeke, I. U., & Maduka, E. A. (2021). Grain characteristics, electrical conductivity, and hardness of Zndoped Cu–3Si alloys system. *SN Applied Sciences*, *3*(11), 829. https://doi.org/10.1007/s42452-021-04784-1 Nuryadi, N., Sudarsono, B., & Asistyasari, A. (2020). Effect of Moisture Content of Green Sand on The Casting Defects. *Journal of Applied Engineering and Technological Science*, *4*(1), 586–598. Özdemir, R., & Karahan, I. H. (2014). Electrodeposition and properties of Zn, Cu, and Cu 1-x Zn x thin films. *Applied Surface Science*, *318*, 314–318. https://doi.org/10.1016/j.apsusc.2014.06.188 Pietrocola, G., Campoccia, D., Motta, C., Montanaro, L., Arciola, C. R., & Speziale, P. (2022). Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. *International Journal of Molecular Sciences*, *23*(11), 5958. https://doi.org/10.3390/ijms23115958 Qu, X., Yang, H., Jia, B., Yu, Z., Zheng, Y., & Dai, K. (2020). Biodegradable Zn–Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. *Acta Biomaterialia*, 117, 400–417. https://doi.org/10.1016/j.actbio.2020.09.041 Riaz, M., Najam, M., Imtiaz, H., Bashir, F., & Hussain, T. (2024). Structural and biological analysis of Zn–Cu based biodegradable alloys for orthopedic application. *Materials* *Chemistry and Physics*, *312*, 128618. https://doi.org/10.1016/j.matchemphys.2023.128618 Sabbouh, M., Nikitina, A., Rogacheva, E., Nebalueva, A., Shilovskikh, V., Sadovnichii, R., Koroleva, A., Nikolaev, K., Kraeva, L., Ulasevich, S., & Skorb, E. (2023). Sonochemical fabrication of gradient antibacterial materials based on Cu-Zn alloy. *Ultrasonics Sonochemistry*, *92*, 106247. https://doi.org/10.1016/j.ultsonch.2022.106247 Sangeetha, R., Muthukumaran, S., & Ashokkumar, M. (2015). Structural, optical, dielectric and antibacterial studies of Mn doped Zn0.96Cu0.04O nanoparticles. *Spectrochimica Acta* - Part A: Molecular and Biomolecular Spectroscopy, 144, 1–7. https://doi.org/10.1016/j.saa.2015.02.056 Shahriyari, F., Shaeri, M. H., Dashti, A., Zarei, Z., Noghani, M. T., Cho, J. H., & Djavanroodi, F. (2022). Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging. *Materials Science and Engineering: A*, *831*, 142149. https://doi.org/10.1016/j.msea.2021.142149 Situmorang, E. M. H., Henniwuriyama, V., & Soegijono, B. (2019). Oligodynamic Cu-Zn composite fabricated by powder metallurgy method. *Journal of Physics: Conference* Series, 1191(1). https://doi.org/10.1088/1742-6596/1191/1/012044 Soegijono, B., Susetyo, F. B., Yusmaniar, & Fajrah, M. C. (2020). Electrodeposition of paramagnetic copper film under magnetic field on paramagnetic aluminum alloy substrates. *E-Journal of Surface Science and Nanotechnology*, *18*, 281–288. https://doi.org/10.1380/EJSSNT.2020.281 Soltani, S., Akhbari, K., & White, J. (2020). Synthesis, crystal structure, magnetic, photoluminescence and antibacterial properties of dinuclear Copper(II) complex. *Journal of Molecular Structure*, 1214, 128233. https://doi.org/10.1016/j.molstruc.2020.128233 Strzępek, P., Mamala, A., Zasadzińska, M., Franczak, K., & Jurkiewicz, B. (2019). Research on the drawing process of Cu and CuZn wires obtained in the cryogenic conditions. *Cryogenics*, *100*, 11–17. https://doi.org/10.1016/j.cryogenics.2019.03.007 Syamsuir, Susetyo, F. B., Soegijono, B., Yudanto, S. D., Basori, Ajiriyanto, M. K., Edbert, D., Situmorang, E. U. M., Nanto, D., & Rosyidan, C. (2023). Rotating-Magnetic-FieldAssisted Electrodeposition of Copper for Ambulance Medical Equipment. *Automotive Experiences*, *6*(2), 290–302. https://doi.org/10.31603/ae.9067 Tajik, S., Najar-Peerayeh, S., & Bakhshi, B. (2020). Hospital clones of Panton-Valentine leukocidin-positive and methicillin-resistant Staphylococcus aureus circulating in the Tehran community. *Journal of Global Antimicrobial Resistance*, 22, 177–181. https://doi.org/10.1016/j.jgar.2019.12.010 Tayyab, K. Bin, Farooq, A., Alvi, A. A., Nadeem, A. B., & Deen, K. M. (2021). Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution. *International Journal of Minerals, Metallurgy and Materials*, 28(3), 440–449. https://doi.org/10.1007/s12613-020-2054-8 Vandersluis, E., Machin, A., Perovic, D., & Ravindran, C. (2020). Failure Analysis of an Ambulance Cathode Ray Tube Monitor Bracket. *Journal of Failure Analysis and* *Prevention*, 20(1), 23–33. https://doi.org/10.1007/s11668-020-00804-1 Viegas, C., Sousa, P., Dias, M., Caetano, L. A., Ribeiro, E., Carolino, E., Twarużek, M., Kosicki, R., & Viegas, S. (2021). Bioburden contamination and Staphylococcus aureus colonization associated with firefighter's ambulances. *Environmental Research*, 197, 111125. https://doi.org/10.1016/j.envres.2021.111125 Villapún, V. M., Dover, L. G., Cross, A., & González, S. (2016). Antibacterial metallic touch surfaces. *Materials*, *9*(9), 1–23. https://doi.org/10.3390/ma9090736 Wang, X., Su, H., Xie, Y., Wang, J., Feng, C., Li, D., & Wu, T. (2023). Atmospheric corrosion of T2 copper and H62 brass exposed in an urban environment. *Materials Chemistry and Physics*, 299, 127487. https://doi.org/10.1016/j.matchemphys.2023.127487 Widyastuti, Rochiem, R., Fellicia, D. M., Adrinanda, C. F. N., & Wibowo, A. P. (2023). Mechanical Properties, Microstructural, and Deep Drawing Formability Analysis on the Annealed CuZn35 Brass Alloy for Cartridge Application. *Key Engineering Materials*, *939*, 31–37. https://doi.org/10.4028/p-21x8y5 Xhafa, S., Olivieri, L., Di Nicola, C., Pettinari, R., Pettinari, C., Tombesi, A., & Marchetti, F. (2023). Copper and Zinc Metal—Organic Frameworks with Bipyrazole Linkers Display Strong Antibacterial Activity against Both Gram+ and Gram- Bacterial Strains. *Molecules*, 28(16), 6160. https://doi.org/10.3390/molecules28166160 Yin, M. yang, Li, Z., Xiao, Z., Pang, Y., Li, Y. ping, & Shen, Z. yan. (2021). Corrosion behavior of Cu–Al–Mn–Zn–Zr shape memory alloy in NaCl solution. *Transactions of Nonferrous Metals Society of China (English Edition)*, 31(4), 1012–1022. https://doi.org/10.1016/S1003-6326(21)65557-7 Zeng, J., Geng, X., Tang, Y., Xiong, Z. C., Zhu, Y. J., & Chen, X. (2022). Flexible photothermal biopaper comprising Cu2+-doped ultralong hydroxyapatite nanowires and black phosphorus nanosheets for accelerated healing of infected wound. *Chemical Engineering Journal*, *437*, 135347. https://doi.org/10.1016/j.cej.2022.135347 Zhang, E., Zhao, X., Hu, J., Wang, R., Fu, S., & Qin, G. (2021). Antibacterial metals and alloys for potential biomedical implants. *Bioactive Materials*, *6*(8), 2569–2612. https://doi.org/10.1016/j.bioactmat.2021.01.030 Zhang, X., Liu, X., Odnevall Wallinder, I., & Leygraf, C. (2016). The protective role of hydrozincite during initial corrosion of a Cu40Zn alloy in chloride-containing laboratory atmosphere. *Corrosion Science*, 103, 20–29. https://doi.org/10.1016/j.corsci.2015.10.027 Ziat, Y., Hammi, M., Laghlimi, C., & Moutcine, A. (2020). Investment casting of leaded brass: Microstructure micro-hardness and corrosion protection by epoxy coating. *Materialia*, *12*, 100794 Contents. https://doi.org/10.1016/j.mtla.2020.100794 # EFFECT OF ZINC ADDITION IN COPPER TO STRUCTURE, HARDNESS, CORROSION, AND ANTIBACTERIAL ACTIVITY by Lisa Samura FTKE Submission date: 03-Dec-2024 08:05PM (UTC+0700) **Submission ID: 2252552734** File name: JAETS_Lisa_Samura_Rev_19_11_2024.pdf (1.26M) Word count: 6908 Character count: 36767 #### Journal of Applied Engineering and Technological Science Vol xx(x) 20lx : XX-XX ### EFFECT OF ZINC ADDITION IN COPPER TO STRUCTURE, HARDNESS, CORROSION, AND ANTIBACTERIAL ACTIVITY Lisa Samura^{1*}, Mustamina Maulani¹, Cahaya Rosyidan¹, Kartika Fajarwati Hartono¹, Suryo Prakoso¹, Evi Ulina Margareta Situmorang², Daniel Edbert³, Bambang Soegijono⁴, Muhammad Yunan Hasbi⁵, Ferry Budhi Susetyo⁶ Department of Petroleum Engineering, Universitas Trisakti, 11440, Indonesia¹ Department of Physiology School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, 14440, Indonesia² Department of Microbiology, Atma Jaya Catholic University of Indonesia, 14440, Indonesia³ PROUDTEK Lab., Department of Geoscience, Universitas Indonesia, 16424, Indonesia⁴ Research Center for Metallurgy – National Research and Innovation Agency, 15314, Indonesia⁵ Department of Mechanical Engineering, Universitas Negeri Jakarta, 13220, Indonesia⁶ lisa.samura@trisakti.ac.id *Coresponding Author #### ABSTRACT Brass (CuZn) is widely used today due to better mechanical, thermal, and chemical properties. The present research fabricated CuZn alloy by adding various Zn (6, 9, and 12 wt.%) to the Cu using gravity casting. Casts CuZn alloy by adding various Zn to the Cu to investigate optimum composition were resulting highest inhibited of bacterial activity. In addition, the structure, hardness, and electrochemical behavior of the alloy were also investigated using XRD, Vickers hardness, and potentiostate equipment. XRD confirmed that CuZn alloy has an alpha phase, and a FCC crystal structure. The rise of the Zn content in the alloy led to an increase in crystallite size, a decrease in the hardness and a shift to a more negative OCP potential at 1200 s measurement. Enhancing the Zn content to 9 wt.% in the alloy lead to decrease the corrosion rate. Moreover, 24-hour post-contact observation found that the sample places removed remained clear of bacteria. The Cu6Zn sample successfully inhibited the growth of Escherichia coli in the 3rd hour, while Staphylococcus aureus was 100 % reduced in the 7th hour. The Cu6Zn sample could be used as an alternative
material for medical equipment in ambulances. Keywords: XRD, Vickers, Electrochemical measurement, Staphylococcus aureus, Escherichia coli #### 1. Introduction Brass (CuZn) is an alloy widely used in the national defense, oil and gas industries, and health because it has better mechanical properties, thermal conductivity, and corrosion resistance (Bhavsar & Bali, 2023; Wang et al., 2023; Widyastuti et al., 2023). CuZn alloys for medical equipment in transportation such as ambulances need to consider two parameters: corrosion resistance and antibacterial characteristics. Commonly NaCl media was used to investigate corrosion for ambulance equipment. This condition due to ambulance equipment commonly exposure from medical patients eccrine sweat and saline-infused (Baker & Wolfe, 2020; Tayyab et al., 2021). Furthermore, some studies found that after cleaning the ambulance, 35.37 % of bacterial contaminants were still seen (Syamsuir et al., 2023). Viegas et al. found *Staphylococcus aureus* was detectable on firefighter's ambulance equipment (Viegas et al., 2021). *Staphylococcus aureus* is a type of bacteria that could cause skin disease and is hard to treat with traditional antibiotics. *Staphylococcus aureus* bacteria tend to have methicillin resistance. According to Tajik et al., 38.4 % of *Staphylococcus aureus* methicillin resistant was found in Tehran community (Tajik et al., 2020). Moreover, this bacteria also could contaminate orthopedic implants and cause serious infections (Pietrocola et al., 2022). Several researchers were interested in investigating the corrosion behavior of CuZn alloy in NaCl medium (Abed & Dawood, 2022; Chen et al., 2024; Gao et al., 2021; Yin et al., 2021). Abed and Dawood investigated the corrosion behavior of Cu40Zn alloy in 3.5% NaCl and found a corrosion rate of around 0.037 mmpy (Abed & Dawood, 2022). Yin et al. investigated the corrosion behavior of Cu alloy in NaCl medium were immersed in different times. More time is immersed, resulting in more corrosion resistance of Cu (Yin et al., 2021). Chen et al. investigated Cu alloy in NaCl medium and found Cu potential around -0.305 V vs SCE and Zn potential around -1.165 V vs SCE (Chen et al., 2024). Gao et al. found that a reduction in thickness (50 to 60 %) of CuZn using cold rolling resulted in a significant decrease in corrosion current from 4.824 to 1.804 µA/cm² (investigating in 3.5 % NaCl) (Gao et al., 2021). Moreover, aluminum (Al) alloy widely used in transportation sector such as ambulance (Blanco et al., 2022; Vandersluis et al., 2020). Liu et al. have found Al alloy corrosion current between 4.868-5.251 A/cm² in a 3.5% NaCl medium (Liu et al., 2020). Comparing the studies of Liu et al. and Gao et al., Al alloy has a higher corrosion current than CuZn (Gao et al., 2021; Liu et al., 2020). Corrosion current significantly influences the corrosion rate, and a rise in the corrosion current would enhance the corrosion rate. Recently, researchers have been interested in investigating CuZn alloy for medical applications (Azizian et al., 2024; Riaz et al., 2024; Sabbouh et al., 2023). Azizian et al. investigated CuZn alloys microstructure, mechanical properties and cytotoxicity for cardiovascular applications (Azizian et al., 2024). Riaz et al. investigated the structural and biological properties of CuZn alloy for orthopedic applications (Riaz et al., 2024). Moreover, Sabbouh et al. did the sonification of CuZn in an alkali solution to enhance the antibacterial inhibition zone (Sabbouh et al., 2023). Moreover, Syamsuir et al. have investigated the antibacterial activity of *Staphylococcus aureus* by presenting a Cu layer for ambulance equipment (Syamsuir et al., 2023). The killing mechanism of bacterial activity inseparable from the ions released by the alloy (Qu et al., 2020). Cu^{2+} ions could be adsorbed on the cytoplasmic membrane surfaces, then penetrate the bacteria, react with sulfhydryl groups, and cause the cell to die (Zeng et al., 2022). The released Zn^{2+} ions could penetrate the cell membrane and cause cell death (Du et al., 2021). Zhang et al. have stated that Cu^{2+} and Zn^{2+} ions could act as antibacterial agents and inhibit *Staphylococcus aureus* growth (Zhang et al., 2021). According to the literature review, research on CuZn alloys with Zn compositions in the range of 6–12 wt.% for medical transportation purposes has not been thoroughly investigated. As mentioned above, the killing mechanism of bacterial activity depend on Cu and Zn ions. CuZn alloy can transform into Cu and Zn ions. Therefore, the present research casts CuZn alloy by adding various Zn to the Cu to investigate optimum composition, resulting in a higher killing mechanism of bacterial activity. Moreover, different alloy compositions would result in different electrochemical behavior and mechanical properties. The present study investigated structure, hardness, electrochemical behavior, and antibacterial activity using X-ray diffraction (XRD), Vickers hardness equipment, potentiostat, and digital camera. #### 2. Literature Review Many techniques are used to make CuZn alloys, including gravity and investment casting (Hendrawan et al., 2021; Ziat et al., 2020). Gravity casting is simple, inexpensive, and can rapidly fill complex geometry (Huang et al., 2024; Nuryadi et al., 2020). Moreover, in the fabrication of CuZn alloys, one thing needs to be considered to produce specific properties, namely alloy composition. Researchers focused on adding various Zn compositions onto Cu for different purposes. Strzępek et al. investigated the mechanical properties of Cu and alpha brass (Cu2.5Zn and Cu6.5Zn) wire (Ø 3.8 mm). Increased Zn content causes increases in ultimate tensile strength, yield strength and hardness (Strzępek et al., 2019). Situmorang et al. fabricated Cu with various Zn additions (10, 20, 38, and 45 wt.%) and found that the higher the Zn composition, the higher the antibacterial properties (Situmorang et al., 2019). Iqbal et al. melted Cu28.7Zn using a furnace and cast to investigate hardness and morphology (Iqbal et al., 2021). Shahriyari et al. added Zn (5, 15, 20, and 30 wt.%), increasing the hardness due to the alloy's rise in the Zn content (Shahriyari et al., 2022). Akhyar et al. melted Cu28.7Zn using a gas furnace and cast to investigate the tensile strength (Akhyar et al., 2023). Morath et al. have created Zn0.8Cu and Zn1.5Cu using casting methods to investigate the biological aspect of arterial implants (Morath et al., 2024). Azizian et al. have added Cu with compositions 1, 2, and 5 wt.% to CuZn alloy by melting in the induction furnace to investigate microstructure, mechanical properties, and cytotoxicity for cardiovascular application (Azizian et al., 2024). Generally, a CuZn alloy with a Zn composition of less than 37 wt.% would produce a single alpha phase with an FCC crystal structure (Clement & Auger, 2023; Mousavi et al., 2020). #### 3. Research Methods #### 3.1 Material Preparation Cu ingot (98.798 %) and Zn powder (99 %) were melted and cast with the alloy composition CuxZn (x=0, 6, 9, and 12 wt.%, namely as Cu, Cu6Zn, Cu9Zn, and Cu12Zn, respectively) and then confirmed the formed alloy using XRF (Table 1). Before melting was conducted, the ingot and the apparatus, such as the crucible, were cleaned using water to avoid impurities and then dried. The Cu ingot was first filled into a silicon carbide crucible (3kg) and then inserted into a muffle furnace. Melting was carried out in a crucible at 1100 °C under atmospheric pressure. After the Cu has melted, remove it from the muffle furnace, mix it with Zn powder, stir it manually, and pour it into a permanent mold. For comparison, Cu ingot was melted and poured into a permanent mold without Zn addition. The as-cast ingots were cut for further characterization, such as XRD, hardness, electrochemical measurement, and antibacterial activity observation. Table 1 – Chemical composition of various casting samples. | Sample | | Element (wt.%) | | | | | | | |--------|--------|----------------|-------|-------|-------|-------|--|--| | Sample | Cu | Zn | Al | Si | P | Fe | | | | Cu | 98.798 | - | 0.135 | 0.444 | 0.384 | 0.238 | | | | Cu6Zn | 92.308 | 6.384 | 0.135 | 0.444 | 0.384 | 0.345 | | | | Cu9Zn | 89.228 | 9.497 | 0.135 | 0.444 | 0.384 | 0.312 | | | | Cu12Zn | 87.075 | 11.557 | 0.135 | 0.444 | 0.384 | 0.405 | | | #### 3.2 XRD Measurement XRD was measured using the PANalytical (Cu $K_{Cl}1 \lambda = 1.5405980$) apparatus. XRD was scanned from 20 to 100° , using step size 0.0217° . The Highscore software was used to refine and collect peak, phase and crystallographic parameters of as-cast samples. By using that software, full width at half maximum (FWHM) are also found. FWHM data is used to calculate crystallite size. #### 3.3 Hardness Measurement Before testing, samples with $20\times20\times6$ mm dimensions were polished using silicon carbide up to #3000 grit. Afterward, the polished sample was cleaned using water, followed by alcohol, and then dried using drier equipment. The hardness test was conducted using the Vickers method. An FV-300e hardness test was performed on top of various samples using 1 kg of load. Ten repeatable measurements were conducted. #### 3.4. Electrochemical Measurement Two electrochemical measurements were conducted in the present research, such as open circuit potential (OCP) and Linear sweep voltammetry (LSV), using Digi-Ivy (DY2311) potentiostat in 0.9 % NaCl at room temperature. OCP was scanned until 1200 s using a sampling scan rate of 0.02 s, while LSV was conducted using a scan rate of 1 mV/s. Cu/CuZn samples are used as the working electrode, platinum wire as the counter electrode, and Ag/AgCl as the reference electrode. LSV data was examined using the Tafel extrapolation method to see corrosion potential (Ecorr) and current density (icorr). The corrosion rate could be found by inserting icorr in the following
equation (Soegijono et al., 2020). Corrosion rate $$(mmpy) = C \frac{M \times icorr}{o \times n}$$ (1) Where C is corrosion constant (3.27 mmpy), M is atomic weight (g/mol), o is material density (g/cm3), and n is the number of electrons involved. #### 3.5 Antibacterial Activity Observation The sample dimension used for antibacterial activity is 20×20×6 mm. Before testing, samples were polished using silicon carbide up to #3000 grit. The experimental procedure for antibacterial activity is similar to that of the previous report (Syamsuir et al., 2023). Moreover, the recent study uses Staphylococcus aureus ATCC 25923 for Direct contact kill assay (24 hours) and Fluid contact assay (8 hours). In comparison, Escherichia coli 25922 was also used in the present study. Afterward, documentation was captured using a digital camera. In addition, 24hour post-contact observation and Fluid contact test were also captured using a digital camera. #### 4. Results and Discussions #### 4.1 XRD The diffraction pattern of Cu/CuZn with (111), (200), (311), and (222) planes can be seen in Figure 1. The four diffraction patterns match the alpha phase, which is shown to align with another study (Heidarzadeh et al., 2022). The acquired XRD data was then analyzed using Highscore software, and the parameters are listed in Table 2. All samples had a face-centered cubic (FCC) crystal structure, indicating that the Cu and Zn atoms dissolve into one another. According to Jinlong et al., the FCC quantity of surface energy is (111)>(001) >(110), and the FCC sample with the (111) plane has the lowest corrosion rate (Jinlong et al., 2016). Moreover, the FCC sample with the preferred orientation of the (111) plane has the highest surface atomic density (Soegijono et al., 2020). Fig. 1. XRD of various casting samples. | Table 2 | - Crystallographic | parameters | of various casting | samples. | |---------|--------------------|------------|--------------------|----------| | | | | Sample | | | . | Sample | | | | |----------------------------------|--------|--------|--------|-----------| | Parameter | Cu | Cu6Zn | Cu9Zn | Cu12Zn | | Crystal structure | | | FCC | An assess | | Lattice constant $a = b = c (Å)$ | 2.964 | 8.929 | 2.981 | 2.964 | | Cell volume (Å ³) | 26.03 | 90 | 26.49 | 26.05 | | d-spacing (Å) | 1.69 | 1.18 | 1.69 | 2.07 | | Crystallite Size (nm) | 227.20 | 109.95 | 204.95 | 316.26 | | Micro strain | 0.37 | 0.53 | 0.16 | 0.32 | Presenting Zn in the alloy reduces crystallite size from 227.20 to 109.95 nm and increases Zn content from 6 to 12 wt.%, leading to an increase in crystallite size from 109.95 to 316.26 nm. This behavior is similar to Özdemir and Karahan's study that showed Zn in the alloy leads to decreased crystallite size, and an increase in Zn content in the alloy leads to increased crystallite size (Özdemir & Karahan, 2014). Moreover, the microstrains of the as-cast sample are independent of Zn content, which perfectly agrees with Karahan and Özdemir's study ((Karahan & Özdemir, 2014). The smallest microstrain is seen in the Cu9Zn sample. #### 4.2 Hardness Figure 2 shows the average hardness of various casting samples. Nikhil et al. have found that pure Cu has a hardness of 140 HV when treated at 400 and 600 $^{\circ}$ C and then held for two hours, followed by quenching in tap water, resulting in a hardness of 100 and 60 HV (Nikhil et al., 2021). The higher heat treatment temperatures led to a decrease in the hardness of the pure Cu. Therefore, the hardness of Cu may vary depending on heat treatment. In the present study, Cu re-casting has a hardness of 74.54 HV. Fig. 2. Average hardness of various casting samples. According to Figure 2, it can be seen that an increase in Zn content led to a decrease in the hardness. Another research study found that Cu (as-cast) has a hardness of around 100 HV, while Cu15 Zn (as-cast) has a hardness of 75 HV (Ezequiel et al., 2024). Nnakwo et al. also found that increased Zn content in the Cu alloy leads to decreased hardness due to increased in grain size and solid solution region (Nnakwo et al., 2021). According to a study by Qu et al. and García-Mintegui et al., pure Zn hardness is between 41-42 HV (García-Mintegui et al., 2021; Qu et al., 2020). Therefore, it could be concluded that Zn in the alloy leads to decreased hardness due to Zn hardness less than Cu. Several researchers correlated measured hardness to crystallite size (Augustin et al., 2016; Syamsuir et al., 2023). Augustin et al. have found an increase in Cu's crystallite size, promoting a decrease in scratch and micro-hardness (Augustin et al., 2016). Syamsuir et al. found a decrease in Cu's crystallite size, leading to an increase in hardness (Syamsuir et al., 2023). Comparing Table 2 with Figure 2, it can be seen that an increase in the Zn content led to an increase in crystallite size and a decrease in the hardness. On the contrary, while as-cast samples do not form an alloy (Cu), the resulting hardness is not aligned with the crystallite size. It seems that it cannot compare the crystallite size were found with measured hardness between alloy (CuZn) and unalloy (Cu) material. Several transportation sectors, such as ambulance equipment, are made from Al alloy (Blanco et al., 2022; Vandersluis et al., 2020). According to Hajizadeh et al., Al alloy hardness is between 32-52 HV (Hajizadeh et al., 2017). Therefore, all specimens have hardness still higher than Al alloy. #### 4.3 OCP Figure 3 shows the OCP measurement result of various casting samples in 0.9 % NaCl at room temperature. Generally, increased Zn content in the alloy promoted more negative potential, which perfectly agrees with the Cocco et al. study (Cocco et al., 2016). Dridi et al. have found that E_{OCP} CuZn30 and CuZn39 are -0.578 and -0.604 V/MSE at 3 % NaCl, which means an increase in the Zn promoted to more negative potential (Dridi et al., 2020). Cu, Cu6Zn, Cu9Zn, and Cu12Zn samples have E_{OCP} potential at 1200 s measurement -0.014, -0.023, -0.027, and -0.032 V vs Ag/AgCl, respectively. Fig. 3. OCP measurement of various casting samples. According to Figure 3, Cu, Cu6Zn, and Cu9Zn samples are steady at initial measurements until 1200 s, indicating that the protective layer formed has good protection. In contrast, the Cu12Zn sample is steady at initial measurements until 600 s, then moves in a more negative direction. These phenomena indicated that the formed protective layer had initially dissolved at 600 s; therefore, the measurement continuously moved forward in a negative direction until the measurement reached 1200 s. #### 4.4 LSV Eccrine sweat and saline-infused for humans are nearly 0.9 % of NaCl (Bond & Lieu, 2014; Tayyab et al., 2021). Therefore, LSV measurement was conducted in 0.9 % NaCl at room temperature. Luo et al. found Cu₂O crystalline growth on the Cu surface when exposed to 0.9 % NaCl, while when exposed to pure water, Cu₂O crystalline was not seen (Luo et al., 2020). Commonly, Cu₂O crystallines are formed, which is preceded by the formation of CuCl when the specimen is tested in a chloride solution. Moreover, Zhang et al., in their study, found ZnO and Zn₅Cl₂(OH)₈·H₂O as corrosion products on top of Cu40Zn surfaces in a chloride environment (Zhang et al., 2016). The reaction of Cu in chloride solution is as follows (Milošev et al., 2024). $$\begin{array}{lll} O_2 + 2H_2O + 4e^- \to 4OH^- & (2) \\ Cu + 2Cl^- &=& CuCl_7 + e^- & (3) \\ Cu + Cl^- &=& CuCl + e^- & (4) \\ CuCl + Cl^- &=& CuCl_7 & (5) \\ Cu &=& Cu^+ + e^- & (6) \\ Cu^+ + 2Cl^- &=& CuCl_7 & (7) \end{array}$$ The reaction of Zn in chloride solution is as follows (Milošev et al., 2024). $$Zn \to Zn^{2+} + 2e^{-}$$ $$Zn^{2+} + 2OH^{-} \to Zn(OH)_{2} \to ZnO + H_{2}O$$ $$5Zn^{2+} + 8OH^{-} + 2Cl^{-} + H_{2}O \to Zn_{5}(OH)_{8}Cl_{2} \cdot H_{2}O$$ (10) LSV measurement results in 0.9 % NaCl can be seen in Figure 4. Fig. 4. LSV scans result of various casting samples. According to Figure 4, corrosion Ecorr and icorr can be found using the Tafel extrapolation method. Moreover, the corrosion rate could be calculated by inserting icorr into expression (1). Table 3 presented Ecorr, icorr, and the corrosion rate of various casting samples. It appears Ecorr is independent of Zn addition; however, Zn is dependent on icorr and corrosion rate (except for the Cu12Zn sample). This behavior is probably due to a protective layer that was formed. Compared to the OCP result, it can be seen that the Cu12Zn sample continuously moves forward in a negative direction from 600 until 1200 s of measurement. Therefore, that sample has a higher icorr and corrosion rate. Table 3 - Corrosion parameters of various casting samples | Sample name | Ecorr (V) vs Ag/AgCl | Icorr (A/cm ²) | Corrosion rate (mmpy) | |-------------|----------------------|----------------------------|-------------------------| | Cu | -0.241 | 4.42×10^{-6} | 5.13 × 10 ⁻² | | Cu6Zn | -0.220 | 3.33×10^{-6} | 3.86×10^{-2} | | Cu9Zn | -0.304 | 2.15×10^{-6} | 2.49×10^{-2} | | Cu12Zn | -0.175 | 6.19×10^{-6} | 7.18×10^{-2} | Qu et al. have found that an increase in Zn content led to an increase in corrosion resistance, which perfectly agrees with the present study (except for Cu12Zn) (Qu et al., 2020). Milošev et al. investigated Cu, Cu10Zn, Cu40Zn, and Zn in 3 % NaCl and found icorr after stabilized at 1 hour around 1.573, 1.456, and 2.114, and 5.21 μ A/cm² respectively (Milošev et al., 2024). According to equation (1), icorr strongly influences the corrosion rate. The more icorr, the higher the corrosion rate. Moreover, a limitation in Zn content in the Cu alloy could influence the corrosion resistance. Presenting the Zn content \leq 11 wt.% in the alloy could enhance the corrosion resistance; however, Zn of more than 10 wt.% could decrease corrosion resistance (Milošev et al., 2024). According to Table 2, the Cu9Zn sample has the lowest microstrain than
others. The measured microstrain could be associated with the sample's crystal defect (Soegijono et al., 2020). Based on Table 2, the Cu9Zn sample has the lowest microstrain, which confirms that the sample has the lowest corrosion rate. Moreover, the FCC sample with the preferred orientation of the (111) plane could offer a lower corrosion rate due to the highest surface atomic density (Jinlong et al., 2016; Soegijono et al., 2020). Compared to other samples, the Cu9Zn sample has the higher preferred orientation of the (111) plane. Even though the (111) plane of the Cu sample is the highest. Unfortunately, the (220) and (200) planes are still present and relatively high. #### 4.5 Antibacterial Activity Figure 5 shows the direct contact kill of *Staphylococcus aureus* and *Escherichia coli* after 24 hours of incubation. The present study focused on *Staphylococcus aureus*, but *Escherichia coli* was also used for comparison. There is no diffusion in the sample; therefore, the inhibition zone could not be seen. Fig. 5. Antibacterial activity test using Staphylococcus aureus (left) and Escherichia coli (right) (a) Cu, (b) Cu6Zn, (c) Cu9Zn, and (d) Cu12Zn. Antibacterial activity after 24 hours of post-contact with various casting samples using *Staphylococcus aureus* and *Escherichia coli* can be seen in Figure 6. The removed sample places remain clear (with no regrowth) from bacterial activity. The antibacterial behavior was significantly influenced by Cu or Zn ions (Qu et al., 2020). Villapún et al. found that releasing Cu ions leads to the highest killing activity of *Staphylococcus aureus* (Villapún et al., 2016). Excess in the Cu ion could be bacteriostatic (Sabbouh et al., 2023). Moreover, Cu ions could be adsorbed on the cytoplasmic membrane surfaces, then penetrate the bacteria, react with sulfhydryl groups and cause the cell to die (Zeng et al., 2022). Furthermore, Cu ions could form hydroxyl groups in the presence of oxygen in nature, which could destroy cell membranes (Dou et al., 2022). Hutchings et al. stated that Zn²⁺ successfully inhibits the growth of *S. epidermidis* (Hutchings et al., 2021). This behavior is associated with the generation of reactive oxygen or the formation of (Zhang et al., 2021). Fig. 6. Antibacterial activity after 24 hours of post-contact (regrowth assessment) towards Staphylococcus aureus (left) and Escherichia coli (right) (a) Cu, (b) Cu6Zn, (c) Cu9Zn, and (d) Cu12Zn Figure 7 shows the fluid contact test of *Staphylococcus aureus* and *Escherichia coli*. The orientation of the test materials is mapped within the yellow box. For the Cu6Zn sample, *Escherichia coli* was killed on the 3rd hour. However, there is no significant reduction within the fluid because there are no diffusible materials. Also, there is no visible growth after 3rd hour for the fluid in contact with the metal. Fig. 7. Fluid contact test of Staphylococcus aureus and Escherichia coli Moreover, it should be noted that the reduction of the colony is significant in the 7th hour for *Staphylococcus aureus* (blue arrow), but for *Escherichia coli*, the inhibition of *Escherichia coli* growth is shown within the 3rd hour of contact (green arrow), for Cu6Zn sample. The reduction of colonies is significant on the surface of the metal. While on the remaining fluid, the reduction is insignificant until 8 hours. This behavior is because *Staphylococcus aureus* and *Escherichia coli* have different membrane structures and thick cell walls, therefore could inhibit ion exchange and restrain the antibacterial effect of Cu and or Zn ions (Di et al., 2022). Cu killing is more effective in Gram-negative bacteria (e.g., *Escherichia coli*) because peptidoglycan affects the cell's susceptibility. The thicker the peptidoglycan layer, the harder it became for the Cu ions to reach the membrane (Soltani et al., 2020; Xhafa et al., 2023). Therefore, *Escherichia coli* was killed in the 3rd hour. Another reason Cu6Zn has better antibacterial performance than others is probably due to its smaller crystallite size. Researchers found that smaller crystallite sizes promote the enhancement of antibacterial effects (Syamsuir et al., 2023). This behavior is attributed to an increase in surface area due to the crystallite size (Sangeetha et al., 2015). The Cu6Zn sample could be used as an alternative material for medical equipment in ambulances. #### 5. Conclusion CuZn has been successfully fabricated. XRD confirmed that CuZn alloy has a single alpha phase with an FCC crystal structure. The rise of the Zn content in the alloy led to a decrease in the hardness due to an increase in crystallite size and led to a shift to more negative OCP potential at 1200 s measurement. Moreover, the rise of the Zn content to 9 wt.% decreased the corrosion rate. It appears there is a limitation in Zn content in the copper alloy that influences the corrosion rate, as shown when Zn content around 12 wt. % is promoted to increase the corrosion rate. Antibacterial activity observation found that all samples had no diffusion. Moreover, 24-hour post-contact observation found that sample places removed from the sample remained clear of bacteria. The Cu6Zn has better antibacterial performance than others due to the smallest crystallite size. According to the fluid contact test, the reduction of the colony of *Staphylococcus aureus* is significant in the 7th hour. The inhibition of *Escherichia coli* growth is also shown within the 3rd hour of contact. This behavior is because *Staphylococcus aureus* and *Escherichia coli* have different membrane structures and thick cell walls, therefore, could inhibit ion exchange and restrain the antibacterial effect of Cu and or Zn ions. #### Acknowledgement This research is under financial support from the Ministry of Education, Culture, Research and Technology Indonesia with contract number 832/LL3/AL.04/2024 and 171/A/LPPM-P/USAKTI/VI/2024. #### References - Abed, K. M., & Dawood, N. M. (2022). Impacts of Tin and Germanium on Corrosion and Erosion-Corrosion Behavior of 60Cu-40Zn alloys. AIP Conference Proceedings, 2660, 020131. https://doi.org/10.1063/5.0108474 - Akhyar, Iqbal, Ali, N., & Husin, H. (2023). Effect of variations in pouring temperature on tensile strength of CuZn cast alloys. *Materials Letters: X*, 17, 100182. https://doi.org/10.1016/j.mlblux.2023.100182 - Augustin, A., Huilgol, P., Udupa, K. R., & Bhat K, U. (2016). Effect of current density during electrodeposition on microstructure and hardness of textured Cu coating in the application of antimicrobial Al touch surface. *Journal of the Mechanical Behavior of Biomedical Materials*, 63, 352–360. https://doi.org/10.1016/j.jmbbm.2016.07.013 - Azizian, F., Naffakh-Moosavy, H., & Bagheri, F. (2024). The role of Cu addition in the metallurgical features, mechanical properties, and cytocompatibility of cardiovascular stents biodegradable Zn-based alloy. *Intermetallics*, 164, 108106. https://doi.org/10.1016/j.intermet.2023.108106 - Baker, L. B., & Wolfe, A. S. (2020). Physiological mechanisms determining eccrine sweat composition. European Journal of Applied Physiology, 120(4), 719–752. https://doi.org/10.1007/s00421-020-04323-7 - Bhavsar, V., & Bali, S. C. (2023). Effect of Compressed Natural Gas (CNG) on corrosion behaviour of brass valve of CNG cylinder. *Engineering Failure Analysis*, 149, 107268. https://doi.org/10.1016/j.engfailanal.2023.107268 - Blanco, D., Mar, E., & Mar, R. (2022). Titanium Alloys Applied to the Transport Sector: A Review. *Metals*, 12(9), 1–21. https://doi.org/10.3390/met12010009 - Bond, J. W., & Lieu, E. (2014). Electrochemical behaviour of brass in chloride solution concentrations found in eccrine fingerprint sweat. *Applied Surface Science*, 313, 455–461. https://doi.org/10.1016/j.apsusc.2014.06.005 - Chen, L., Ma, R., Dong, J., Chen, S., Li, C., Ma, C., Bian, G., & Wang, C. (2024). A multi-ion - transport model of Cu-Zn-Fe trimetallic couple in near-neutral NaCl solution. *Corrosion Science*, 239, 112414. https://doi.org/10.1016/j.corsci.2024.112414 - Clement, A., & Auger, T. (2023). An EAM potential for α-brass copper-zinc alloys: application to plasticity and fracture. *Modelling and Simulation in Materials Science and Engineering*, 31(1), 015004. https://doi.org/10.1088/1361-651X/aca4ec - Cocco, F., Fantauzzi, M., Elsener, B., & Rossi, A. (2016). Dissolution of brass alloys naturally aged in neutral solutions-an electrochemical and surface analytical study. RSC Advances, 6(93), 90654–90665. https://doi.org/10.1039/c6ral8200c - Di, T., Xu, Y., Liu, D., & Sun, X. (2022). Microstructure, Mechanical Performance and Anti-Bacterial Activity of Degradable Zn-Cu-Ag Alloy. *Metals*, 12(9), 1–13. https://doi.org/10.3390/met12091444 - Dou, X., Chen, Y., & Shi, H. (2022). CuBi2O4/BiOBr composites promoted PMS activation for the degradation of tetracycline: S-scheme mechanism boosted Cu2+/Cu+ cycle. Chemical Engineering Journal, 431(P2), 134054. https://doi.org/10.1016/j.cej.2021.134054 - Dridi, A., Dhouibi, L., Hihn, J. Y., Berçot, P., Rezrazi, E. M., Sassi, W., & Rouge, N. (2020). Analytical Study of CuZn 30 and CuZn 39 Brass Surfaces in 3% NaCl Solution Under Polarization. Chemistry Africa, 3(3), 735–747. https://doi.org/10.1007/s42250-020-00182-z - Du, M., Zhao, W., Ma, R., Xu, H., Zhu, Y., Shan, C., Liu, K., Zhuang, J., & Jiao, Z. (2021). Visible-light-driven photocatalytic inactivation of S. aureus in aqueous environment by hydrophilic zinc oxide (ZnO) nanoparticles based on the interfacial electron transfer in S. aureus/ZnO composites. *Journal of Hazardous Materials*, 418, 126013 Contents. https://doi.org/10.1016/j.jhazmat.2021.126013 - Ezequiel, M., Proriol Serre, I., Auger, T., Héripré, E., Hadjem-Hamouche, Z., & Perriere, L. (2024). The liquid metal embrittlement of a reactive system at room temperature: α-brasses in contact with the liquid eutectic Ga-In. *Engineering Failure Analysis*, 164, 108694.
https://doi.org/10.1016/j.engfailanal.2024.108694 - Gao, P., Ren, Y., Qian, S., He, Y., & Shen, D. (2021). Evolution of microstructure and electrochemical corrosion behavior of CuZn-based alloys induced by cold rolling. *Journal of Materials Research and Technology*, 15, 360–368. https://doi.org/10.1016/j.jmrt.2021.08.035 - García-Mintegui, C., Córdoba, L. C., Buxadera-Palomero, J., Marquina, A., Jiménez-Piqué, E., Ginebra, M. P., Cortina, J. L., & Pegueroles, M. (2021). Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility. *Bioactive Materials*, 6(12), 4430–4446. https://doi.org/10.1016/j.bioactmat.2021.04.015 - Hajizadeh, K., Ejtemaei, S., & Eghbali, B. (2017). Microstructure, hardness homogeneity, and tensile properties of 1050 aluminum processed by constrained groove pressing. *Applied Physics A: Materials Science and Processing*, 123(8), 1–9. https://doi.org/10.1007/s00339-017-1123-y - Heidarzadeh, A., Javidani, M., & St-Georges, L. (2022). Crystallographic Orientation Relationship between α and β Phases during Non-Equilibrium Heat Treatment of Cu-37 wt. % Zn Alloy. Crystals, 12(1), 97. https://doi.org/10.3390/cryst12010097 - Hendrawan, C. N., Setyani, A., Pertiwi, D. R. K., & Sofyan, B. T. (2021). Effect of 9wt% Mn addition on cold rolling and annealing behaviour of Cu-31Zn alloy. *Materials Today: Proceedings*, 46, 3346–3351. https://doi.org/10.1016/j.matpr.2020.11.476 - Huang, S. J., Li, C., Feng, J. H., Selvaraju, S., & Subramani, M. (2024). Mechanical and Corrosion Tests for Magnesium–Zinc/Ti-6Al-4V Composites by Gravity Casting. *Materials*, 17(8), 1836. https://doi.org/10.3390/ma17081836 - Hutchings, C., Yair, Z. P., Reifen, R., & Shemesh, M. (2021). Antimicrobial effect of zn2+ ions governs the microbial quality of donor human milk. *Foods*, 10(3), 1–12. https://doi.org/10.3390/foods10030637 - Iqbal, Ali, N., Husin, H., Akhyar, Khairil, & Farhan, A. (2021). Differences in Pour Temperature Affect Hardness Properties of CuZn Brass Alloy through Metal Casting. *IOP Conference Series: Materials Science and Engineering*, 1082(1), 012001. - https://doi.org/10.1088/1757-899x/1082/1/012001 - Jinlong, L., Tongxiang, L., & Chen, W. (2016). Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel. *Journal of Solid State Chemistry*, 240, 109–114. https://doi.org/10.1016/j.jssc.2016.05.025 - Karahan, I. H., & Özdemir, R. (2014). Effect of Cu concentration on the formation of Cu 1-x Zn x shape memory alloy thin films. *Applied Surface Science*, 318, 100–104. https://doi.org/10.1016/j.apsusc.2014.01.119 - Liu, P., Hu, J. ying, Li, H. xue, Sun, S. yu, & Zhang, Y. bin. (2020). Effect of heat treatment on microstructure, hardness and corrosion resistance of 7075 Al alloys fabricated by SLM. Journal of Manufacturing Processes, 60, 578–585. https://doi.org/10.1016/j.jmapro.2020.10.071 - Luo, J., Hein, C., Pierson, J. F., & Mücklich, F. (2020). Sodium chloride assists copper release, enhances antibacterial efficiency, and introduces atmospheric corrosion on copper surface. Surfaces and Interfaces, 20, 100630. https://doi.org/10.1016/j.surfin.2020.100630 - Milošev, I., Taheri, P., Kapun, B., Kozlica, D. K., Mol, A., & Kokalj, A. (2024). The effect of molecular structure of imidazole-based compounds on corrosion inhibition of Cu, Zn, and Cu-Zn alloys. Corrosion Science, 127870. https://doi.org/10.1016/j.corsci.2024.112328 - Morath, L., Rahim, S. A., Baker, C., Anderson, D., Hinds, M., Sikora-Jasinska, M., Oujiri, L., Leyssens, L., Kerckhofs, G., Pyka, G., Oliver, A. A., Drelich, J. W., & Goldman, J. (2024). The biological effects of copper alloying in Zn-based biodegradable arterial implants. Biomaterials Advances, November, 124658. https://doi.org/10.1016/j.bioadv.2024.214112 - Mousavi, S. E., Sonboli, A., Naghshehkesh, N., Meratian, M., Salehi, A., & Sanayei, M. (2020). Different behavior of alpha and beta phases in a Low Stacking Fault Energy copper alloy under severe plastic deformation. *Materials Science and Engineering: A*, 788, 139550. https://doi.org/10.1016/j.msea.2020.139550 - Nikhil, Singh, M. K., Ji, G., & Prakash, R. (2021). Investigation on the effects of cooling rate on surface Texture, corrosion behaviour and hardness of pure copper. *Materials Today:* Proceedings, 47(19), 6693–6695. https://doi.org/10.1016/j.matpr.2021.05.115 - Nnakwo, K. C., Osakwe, F. O., Ugwuanyi, B. C., Oghenekowho, P. A., Okeke, I. U., & Maduka, E. A. (2021). Grain characteristics, electrical conductivity, and hardness of Zn-doped Cu–3Si alloys system. SN Applied Sciences, 3(11), 829. https://doi.org/10.1007/s42452-021-04784-1 - Nuryadi, N., Sudarsono, B., & Asistyasari, A. (2020). Effect of Moisture Content of Green Sand on The Casting Defects. *Journal of Applied Engineering and Technological Science*, 4(1), 586–598. - Özdemir, R., & Karahan, I. H. (2014). Electrodeposition and properties of Zn, Cu, and Cu 1-x Zn x thin films. *Applied Surface Science*, 318, 314–318. https://doi.org/10.1016/j.apsusc.2014.06.188 - Pietrocola, G., Campoccia, D., Motta, C., Montanaro, L., Arciola, C. R., & Speziale, P. (2022). Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. *International Journal of Molecular Sciences*, 23(11), 5958. https://doi.org/10.3390/ijms23115958 - Qu, X., Yang, H., Jia, B., Yu, Z., Zheng, Y., & Dai, K. (2020). Biodegradable Zn–Cu alloys show antibacterial activity against MRSA bone infection by inhibiting pathogen adhesion and biofilm formation. Acta Biomaterialia, 117, 400–417. https://doi.org/10.1016/j.actbio.2020.09.041 - Riaz, M., Najam, M., Imtiaz, H., Bashir, F., & Hussain, T. (2024). Structural and biological analysis of Zn–Cu based biodegradable alloys for orthopedic application. *Materials Chemistry and Physics*, 312, 128618. https://doi.org/10.1016/j.matchemphys.2023.128618 - Sabbouh, M., Nikitina, A., Rogacheva, E., Nebalueva, A., Shilovskikh, V., Sadovnichii, R., Koroleva, A., Nikolaev, K., Kraeva, L., Ulasevich, S., & Skorb, E. (2023). Sonochemical fabrication of gradient antibacterial materials based on Cu-Zn alloy. *Ultrasonics Sonochemistry*, 92, 106247. https://doi.org/10.1016/j.ultsonch.2022.106247 - Sangeetha, R., Muthukumaran, S., & Ashokkumar, M. (2015). Structural, optical, dielectric and antibacterial studies of Mn doped Zn0.96Cu0.04O nanoparticles. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 144, 1–7. https://doi.org/10.1016/j.saa.2015.02.056 - Shahriyari, F., Shaeri, M. H., Dashti, A., Zarei, Z., Noghani, M. T., Cho, J. H., & Djavanroodi, F. (2022). Evolution of mechanical properties, microstructure and texture and of various brass alloys processed by multi-directional forging. *Materials Science and Engineering: A*, 831, 142149. https://doi.org/10.1016/j.msea.2021.142149 - Situmorang, E. M. H., Henniwuriyama, V., & Soegijono, B. (2019). Oligodynamic Cu-Zn composite fabricated by powder metallurgy method. *Journal of Physics: Conference Series*, 1191(1). https://doi.org/10.1088/1742-6596/1191/1/012044 - Soegijono, B., Susetyo, F. B., Yusmaniar, & Fajrah, M. C. (2020). Electrodeposition of paramagnetic copper film under magnetic field on paramagnetic aluminum alloy substrates. E-Journal of Surface Science and Nanotechnology, 18, 281–288. https://doi.org/10.1380/EJSSNT.2020.281 - Soltani, S., Akhbari, K., & White, J. (2020). Synthesis, crystal structure, magnetic, photoluminescence and antibacterial properties of dinuclear Copper(II) complex. *Journal of Molecular Structure*, 1214, 128233. https://doi.org/10.1016/j.molstruc.2020.128233 - Strzepek, P., Mamala, A., Zasadzińska, M., Franczak, K., & Jurkiewicz, B. (2019). Research on the drawing process of Cu and CuZn wires obtained in the cryogenic conditions. *Cryogenics*, 100, 11–17. https://doi.org/10.1016/j.cryogenics.2019.03.007 - Syamsuir, Susetyo, F. B., Soegijono, B., Yudanto, S. D., Basori, Ajiriyanto, M. K., Edbert, D., Situmorang, E. U. M., Nanto, D., & Rosyidan, C. (2023). Rotating-Magnetic-Field-Assisted Electrodeposition of Copper for Ambulance Medical Equipment. *Automotive Experiences*, 6(2), 290–302. https://doi.org/10.31603/ae.9067 - Tajik, S., Najar-Peerayeh, S., & Bakhshi, B. (2020). Hospital clones of Panton-Valentine leukocidin-positive and methicillin-resistant Staphylococcus aureus circulating in the Tehran community. *Journal of Global Antimicrobial Resistance*, 22, 177–181. https://doi.org/10.1016/j.jgar.2019.12.010 - Tayyab, K. Bin, Farooq, A., Alvi, A. A., Nadeem, A. B., & Deen, K. M. (2021). Corrosion behavior of cold-rolled and post heat-treated 316L stainless steel in 0.9wt% NaCl solution. *International Journal of Minerals, Metallurgy and Materials*, 28(3), 440–449. https://doi.org/10.1007/s12613-020-2054-8 - Vandersluis, E., Machin, A., Perovic, D., & Ravindran, C. (2020). Failure Analysis of an Ambulance Cathode Ray Tube Monitor Bracket. *Journal of Failure Analysis and Prevention*, 20(1), 23–33. https://doi.org/10.1007/s11668-020-00804-1 - Viegas, C., Sousa, P., Dias, M., Caetano, L. A., Ribeiro, E., Carolino, E., Twarużek, M., Kosicki, R., & Viegas, S. (2021). Bioburden contamination and Staphylococcus aureus colonization associated with firefighter's ambulances. *Environmental Research*, 197, 111125. https://doi.org/10.1016/j.envres.2021.111125 - Villapún, V. M., Dover, L. G., Cross, A., & González, S. (2016). Antibacterial metallic touch surfaces. Materials, 9(9), 1–23. https://doi.org/10.3390/ma9090736 - Wang, X., Su, H., Xie, Y., Wang, J., Feng, C., Li, D., & Wu, T. (2023). Atmospheric corrosion of T2 copper and H62 brass exposed in an urban environment. *Materials Chemistry and Physics*, 299, 127487. https://doi.org/10.1016/j.matchemphys.2023.127487 - Widyastuti, Rochiem, R., Fellicia, D. M., Adrinanda, C. F. N., & Wibowo, A. P. (2023). Mechanical Properties,
Microstructural, and Deep Drawing Formability Analysis on the Annealed CuZn35 Brass Alloy for Cartridge Application. Key Engineering Materials, 939, 31–37. https://doi.org/10.4028/p-21x8y5 - Xhafa, S., Olivieri, L., Di Nicola, C., Pettinari, R., Pettinari, C., Tombesi, A., & Marchetti, F. (2023). Copper and Zinc Metal—Organic Frameworks with Bipyrazole Linkers Display Strong Antibacterial Activity against Both Gram+ and Gram—Bacterial Strains. *Molecules*, 28(16), 6160. https://doi.org/10.3390/molecules28166160 - Yin, M. yang, Li, Z., Xiao, Z., Pang, Y., Li, Y. ping, & Shen, Z. yan. (2021). Corrosion behavior of Cu–Al–Mn–Zn–Zr shape memory alloy in NaCl solution. *Transactions of Nonferrous Metals Society of China (English Edition)*, 31(4), 1012–1022. https://doi.org/10.1016/S1003-6326(21)65557-7 - Zeng, J., Geng, X., Tang, Y., Xiong, Z. C., Zhu, Y. J., & Chen, X. (2022). Flexible photothermal biopaper comprising Cu2+-doped ultralong hydroxyapatite nanowires and black phosphorus nanosheets for accelerated healing of infected wound. *Chemical Engineering Journal*, 437, 135347. https://doi.org/10.1016/j.cej.2022.135347 - Zhang, E., Zhao, X., Hu, J., Wang, R., Fu, S., & Qin, G. (2021). Antibacterial metals and alloys for potential biomedical implants. *Bioactive Materials*, 6(8), 2569–2612. https://doi.org/10.1016/j.bioactmat.2021.01.030 - Zhang, X., Liu, X., Odnevall Wallinder, I., & Leygraf, C. (2016). The protective role of hydrozincite during initial corrosion of a Cu40Zn alloy in chloride-containing laboratory atmosphere. Corrosion Science, 103, 20–29. https://doi.org/10.1016/j.corsci.2015.10.027 - Ziat, Y., Hammi, M., Laghlimi, C., & Moutcine, A. (2020). Investment casting of leaded brass: Microstructure micro-hardness and corrosion protection by epoxy coating. *Materialia*, 12, 100794 Contents. https://doi.org/10.1016/j.mtla.2020.100794 # EFFECT OF ZINC ADDITION IN COPPER TO STRUCTURE, HARDNESS, CORROSION, AND ANTIBACTERIAL ACTIVITY **ORIGINALITY REPORT** 20% 12% 110 4% SIMILARITY INDEX INTERNET SOURCES **PUBLICATIONS** STUDENT PAPERS MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED) 1% ★ m.riunet.upv.es **Internet Source** Exclude quotes Off Exclude matches Off Exclude bibliography Off