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ABSTRACT
Cases of the COVID-19 pandemic are gradually decreasing every day in Indonesia, but the impact
of the COVID-19 pandemic has greatly affected various sectors, especially the economy and
business. Sales transactions have not yet reached the company's target due to weak public purchasing
power. The accuracy of customer segmentation analysis and attractive promo voucher offers are
needed to increase the opportunity for people's purchasing power for a product. This study aimed to
predict the level of customer purchasing power using the random forest and naive Bayes methods in
the case of multi-class data classification at PT. XYZ. The classification is carried out to determine
the type of promo voucher suitable to be offered to customers according to the level of customer
purchasing power. The data used is historical daily transaction data from January 1, 2022, to
December 31, 2022, which is the transition period for the COVID-19 pandemic. Evaluation using
the random forest method produces an accuracy of 99.99%, while the naive Bayes method produces
an accuracy of 92.99%. The random forest and naive Bayes methods can work very well on large
data volumes. However, from the comparison results, it can be concluded that the performance of
the random forest method is better than the naive Bayes method in the multi-class classification case

in predicting the level of customer purchasing power at PT. XYZ. )
Keywords: Classification, Random Forest, Naive Bayes, Multi-Class, Customer Segmentation

How to Cite: Puspa, S. D., Puspitasari, F., Riyono, J., Pujiastuti., Bijlsma, D. L., & Leo, J.
A. (2023). Customer Segmentation Analysis Using Random Forest & Naive Bayes Method
In The Case of Multi-Class Classification at PT. XYZ. Mathline: Jurnal Matematika dan
Pendidikan Matematika, 8(4), 1359-1372. http://doi.org/10.31943/mathline.v8i4.532

PRELIMINARY

In recent years, there has been an exponential positive growth in the volume of data
in the big data phenomenon. Apart from increasing volume, the variety and complexity of
data is also experiencing rapid development. The impact of the big data phenomenon is very
significant in various sectors, especially the business sector. Today's business competition is
determined by the ability to process data to achieve optimal user solutions (Riahi & Riahi,
2018). According to (Romero et al., 2021), studying the current situation based on Business

Intelligence (BI) in the economic and business fields can positively impact making effective
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and accurate decisions in companies. This includes acquiring analytical skills, 1T
capabilities, business knowledge, and communication skills. The goal is to enhance a
company's market position with innovative solutions and gain a competitive edge in
business.

COVID-19 emerged in Wuhan, China, in December 2019 and has devastated global
health. It was declared a pandemic by the WHO on March 11, 2020. Lockdowns and
quarantine measures have been implemented worldwide to contain its spread. Capital
markets have been affected due to uncertainty around its impact on investments (Parwati et
al., 2023). In Indonesia, the COVID-19 virus spread rapidly in 2020, leading to restrictions
on community activities. This has caused many companies to reduce output capacity by
decreasing working hours and stopping machine use. Some businesses were forced to stop
operating due to regulatory factors. This has had a significant impact on multiple sectors and
has slowed down the Indonesian economy (Badan Pusat Statistik, 2020).

Report on COVID-19 Cases in Indonesia

Figure 1. Covid-19 Daily Case Graph

Source: (Komite Penanganan Covid-19 & Pemulihan Ekonomi Nasional, 2023)

In 2021, COVID-19 cases decreased despite a rise in daily new cases in February-
March 2022. Daily new cases gradually reduced until December 2022, as shown in Figure
1. This period marked Indonesia’s transition from the pandemic, with some business sectors
recovering. However, people's purchasing power is still weak, and sales transactions have
yet to reach company targets. PT. XYZ is one such company that has started to improve
during this transition period.

PT. XYZ operates in the food and beverage (F&B) sector and has 200 outlets
throughout Indonesia. PT. XYZ grows along with digitalization, where more than 70% of
sales come from online orders. Therefore, to increase people's purchasing power, it is
necessary to offer attractive & targeted types of promotional vouchers. Sales transaction data

at PT. XYZ has a large data volume with complexity, including menu variations, voucher
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types, channels, and many stores with varying customer purchasing power. So, it is necessary
to use a data mining-based algorithm to determine the right promotional voucher offer by
classifying the purchasing power level of PT customers. XYZ. Accurate analysis based on
purchasing power and consumer behavior will increase the opportunity to purchase products
offered by marketers (Rahim et al., 2021).

Classification is a data mining technique that predicts future trends based on
historical data. It falls under the category of predictive mining, which is a type of supervised
learning. There are various methods of classification, such as decision trees, the C4.5
algorithm, random forest, naive Bayes, support vector machine, neural network, and more.
Based on research findings by (Schonlau & Zou, 2020), random forest models have higher
prediction accuracy than parametric models like linear regression and logistic regression.
Multiclass outcomes and regressions yield greater performance improvements than binary
outcomes. Additionally, it has a feature selection process that enables the model to work
efficiently on complex parameters of big data (Pavlov, 2019).

According to a research study conducted by (Zaw et al., 2019), the Naive Bayes
method was able to accurately detect 81.25% of tumor images and 100% of non-tumor
images, resulting in an overall accuracy rate of 94%. The study concluded that Naive Bayes
is a reliable and fast method for detecting brain tissue abnormalities. In addition, another
research study conducted by (Putro et al., 2020) found that Naive Bayes was effective in
customer classification, achieving a precision value of 100%, a recall value of 91%, and an
accuracy value of 92%. The Naive Bayes method can also be used for sentiment analysis
and has good processing time complexity on big data during text classification, where the
algorithm is used as a classification engine (Aprilia et al., 2021). These results highlight the
effectiveness and efficiency of Naive Bayes and Random Forest methods in various
classification applications.

Based on the explanation above, this research aims to predict the most suitable
promotional voucher offer by classifying the level of customer purchasing power using the
Random Forest and Naive Bayes methods. Furthermore, the model evaluation results will
compare the performance of the Random Forest and Naive Bayes methods to determine the
best modeling approach. The benefit of this research is providing insights into the most
effective method for classifying customer purchasing power levels, helping the marketing

team to create customer segmentation and market analyses.
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METHODS

Data mining is a big data analysis technique to find patterns and meaningful
relationships hidden in data. Data mining generally processes data originating from
observations with large data volumes. As a result, data mining is connected to various other
scientific fields, including mathematics (particularly optimization), computer science,
machine learning, artificial intelligence, image processing, text mining, and others
(Durugkar et al., 2022).

Business
Understanding

I

Data
Understanding

!

Testing Dataset w Deta . Training
Preparation Dataset
> Modelling

}

Evaluations

hd

Deployment

Figure 2. Flowchart Research

Cross-Industry Standard Process for Data Mining (Crisp-DM) is a data mining
process model (data mining framework). CRISP-DM explicitly introduces business
understanding and data understanding as the primary foundation for digging deeper insights
to achieve business goals. The research flowchart is shown in Figure 2, and the model life
cycle of the CRISP-DM process in this research is as follows (Schroer et al., 2021).

1. Business Understanding

The following are the stages of business understanding:

a. Determine business goals
The first step of this research is to identify the problem and further investigate the
company's business objectives, products, and sales system by conducting interviews with

relevant parties.
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b. Conducting an assessment
Evaluating the data availability and assessing the situation to determine whether the data
held follows the analysis needs.
c. Determining data mining objectives
In this research, the data mining method aims to obtain knowledge in predicting the
suitable type of voucher offer based on customers' level of purchasing power from each
outlet location.
2. Data Understanding
The process of data understanding begins with collecting initial data and the results
of activities as a first step in getting to know the data well. This helps to identify initial
insights and interesting subsets of the data, which can be used to form hypotheses about
valuable information. The data used in this research is primary data with 416,603 sales
transaction data, including holidays. This data is daily sales transaction data from 200 outlets
across Indonesia.
3. Data Preparation
The data preparation stage involves all activities in forming the dataset that will be
used in modeling. At this stage, attribute selection, table formation, transformation, and data
cleaning are carried out to remove missing values and outliers until the data is ready for
modeling. The data variables used in this research are outlet location, transaction time,
channel, and average ticket (AT), which have been divided into several classes according to
the level of purchasing power.
4. Modeling
In this stage, we first visualize the data and then select and implement data mining
techniques to solve the problem. For this research, we utilized the Random Forest and Naive
Bayes algorithms. The data for classification was divided into two groups- training data and
testing data with the assistance of R Studio Statistical Computing software.
5. Evaluations
Evaluation is used to determine the level of accuracy or error rate in a model that has
been created. This helps to assess the model's effectiveness in solving a particular problem.
Additionally, evaluation can be used to compare the performance of different algorithms that
are used to solve the same problem.
6. Deployment
After evaluating the modeling results, the Decision Support System (DSS). is

implemented to predict suitable vouchers based on customer's purchasing power. It is
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important to monitor the models for accuracy in case of operational changes. For this
research, primary data was sourced from PT. XYZ covers the period between January 1,
2022, and December 31, 2022, which is the transition period for the COVID-19 pandemic,
where the Indonesian economy is starting to recover from the impact of the pandemic. The
classification analysis was conducted using the Random Forest & Naive Bayes method using
R statistical computing software.

Random forest was designed by (Breiman, 2001), which is a supervised learning
method developed from the work of (Amit & Geman, 1997; Ho, 1998; Dietterich, 2000).
This method significantly improves performance compared to single tree classifiers such as
C4.5. Random forest is a powerful tool for prediction modeling because it can handle
datasets with a large number of predictor variables. However, it is often beneficial to
minimize the number of predictors needed to obtain accurate outcome predictions to improve
efficiency. Random forest is a combination of several predictor trees called decision trees,
such that each tree depends on the values of a random vector sampled independently and
with the same distribution for all trees in the forest (Breiman, 2001). Random forest
prediction results are obtained through the majority of results from each individual decision
tree, namely through voting for classification and averaging for regression. A Random Forest
consisting of N trees can be formulated in the equation (1) below

1(y) = argmax, (TN, In, ;)=c) 1)
where [ is the indicator function and h,, is the n-th tree (Speiser et al., 2019).

The random forest algorithm can be divided into two stages, namely, forming a
random forest and then making predictions from the random forest classifier formed in the
first stage. The formation of a random forest can be briefly explained through the following

pseudocode in Figure 3 (Robin & Jean-Michel, 2020):

-

~

1. Randomly select k features from a total of m features, where k << m (k is
much smaller than m)

Among k features, calculate node d using the best-split point

Split nodes into daughter nodes using the best split

Repeat steps 1 to 3 until I nodes are reached

K . Create a forest by repeating steps 1 to 4 n times to form n trees /

oA W

Figure 3. Pseudocode of Random Forest

The Naive Bayes method is a classic classification technique that utilizes statistical
calculations, specifically Bayes' Theorem. The main feature of Naive Bayes classification is

the strong assumption that all parameters are independent. Thomas Bayes, a British
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statistician, proposed this method, which involves predicting future possibilities based on

previous experiences. Bayes' theorem can be written in equation (2)

P(X|C)P(C)

PCIX) = =55

()
where P(C|X) is a posterior, P(X|C) is a likelihood, P(C) is class prior probability, and
P(X) is predictor prior probability(Kubat, 2021). Naive Bayes classification estimates the
probability equation in (3) & (4) as follows :

P(y) =7 ®)
P(xily) =2 O

where n is the total number of data points in the training data set; n,, is the number of target
data points of class y; n,, N x; is the number of data points with target class y; and i is an
attribute variable of x; (Makruf et al., 2021).
By using the maximum likelihood estimation principle, Naive Bayes classification
determines the most probable category for a given sample (Larose & Larose, 2019).
P(Ci|X) = Max{P(C,|X), P(C2|X), ..., P(Cr|X) } (%)
Suppose the sample X = (44, 4,, ..., Ay) is an attribute vector, 4; is the jth attribute which

may have several different value x;. In Naive Bayes classification, it is assumed that the

attributes are independent of each other, so:

P(X|C) = 15, P(4; = x;1Cy) (6)
e, p(A; = x;|C;)P(cy)
P(Cllx) — ( JP(X)J| l) (7)
Let ;5 = @ (> 0), that is P(C,|X) = a[Tj= P(4; = %1€ P(C) 8)

Bayesian decision theory, a fundamental approach to decision-making under the
probability framework, makes optimal classification decisions based on probabilities and
costs of misclassification when all relevant probabilities are known. The pseudocode for the

Naive Bayes classifier algorithm is briefly shown in Figure 4 (Zhou, 2021).
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1. Read the training dataset T
2. Calculate the mean and standard deviation of the predictor variables in each

class

3. Repeat then calculate the probability of f; using the gauss density equation

in each class until the probability of all predictor variables (f1, f2, f3, ---

Jn)

has been calculated
4. Calculate the likelihood for each class
5. Get the greatest likelihood

Figure 4. Pseudocode of Naive Bayes

Table 1 shows the confusion matrix for the multi-class classification case with k

classes. Furthermore, from the confusion matrix, an evaluation of the algorithm's

performance is calculated based on accuracy, precision, recall (sensitivity), and specificity

sequentially using the formula shown in equations (9), (10), (11), and (12) where TP refers

to truly identified as a positive result, TN refers to truly identified as negative, FP refers to

falsely identified as positive result and FN refers to falsely identified as negative result
(Markoulidakis et al., 2021).

Table 1. Confusion Matrix Form for Multi-Class Classification

Actual
Class1 Class 2 Class k
Class 1 fi1 fi2 fik
Prediction Cla:ss 2 ffl f?z fzzk
Class k fi1 frz frx
_ N TP(Cy)
Accuracy = sy=sy = Ny ©)
. _ TP(Cy)
Precision of Class C; = TIPS (10)
_ TP(C;)
Recall of Class C; = TPCO+FN(CD (11)
2Ly TRt Cik
e s L iz k#j
Spcificity of Class C; KN e (12)
k#j

RESULT AND DISCUSSION

Data Description

At PT. XYZ, the sales transaction app, provides valuable insights into overall sales

volume and product performance. However, some limitations need to be addressed:
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1. It is necessary to determine the appropriate type of voucher promo based on the level of
purchasing power of customers.

2. The type of voucher offered does not consider transaction times during high and low sales
volume periods on specific dates.

3. The app does not provide additional information, such as sales predictions and analysis
of factors influencing sales. Therefore, supporting data is needed for informed decision-
making by the Business Director.

Data preparation is proposed in this research after carrying out business understanding
and data understanding. In data preparation, data cleaning, feature selection, data
transformation, viewing data dimensions, reviewing the structure of the input dataset, and
checking for missing data from certain customers are carried out. In detail, the features of
the dataset are shown in Table 2 to provide a more comprehensive understanding.

Table 2. Dataset After Pre-Processing

No Column Type Details
1  Location Factor Location of outlets spread across Indonesia, such as
(Class Object)  Bali, Jakarta, West Java, Central Java, South
Sumatera, North Sumatera, and others.

2  Month Factor Month of sales transaction such as January,
(Class Object)  February, March, etc.
3 Weekinyear Factor Period per week where sales transactions occur
(Class Object)  such as weekl, week2, week3, ..., and week 52
4  Quartal Factor Sales transaction quarter period such as Q1, Q2, Q3
(Class Object)  and Q4.
5 Channel Factor Types of transaction services such as Gojek, Grab,
(Class Object)  Shopeefood, Traveloka, Dine In, Carry Out and
others.
6 AT Integer Average Ticket is the average price paid per
customer in one visit
7  Decision Factor Class types on customer purchasing power are

(Class Object)  divided into 6 classes

Figure 5 shows the distribution of location and channel variables through histogram
visualization. Five locations have the highest outlets, including Jakarta, Bodetabek (Bogor,
Depok, Tangerang, Bekasi), West Java, East Java, and Central Java, which show the highest
sales of PT. XYZ in meeting higher raw material inventories. Moreover, for channels, the
five highest types of service are Carry Out, Grab, Gojek, Applications, and Shopeefood,
which show that the highest service interest is purchasing in stores via Carry Out. However,
the influence of e-commerce such as Grab, Gojek, and Shoppefood is enormous in online
purchases of PT. XYZ.
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Location Channel
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Figure 5. Variable Distribution

Random Forest Classification Analysis Results

The classification of offering the suitable voucher type to customers uses the Random
Forest and Naive Bayes algorithms. This research divides the data into training and testing
data with proportions of 75% and 25%, respectively. This division is the best parameter in
experiments that have been carried out previously. The analysis results with random forest
used a number of trees of 500 to obtain a minimum error of 0.01% (see Figure 6). The more
trees used, the smaller the error obtained, but in PT. XYZ transaction data will have the

smallest error by using 500 trees.

modelRF
o]
3
=
0
Q —
o
5 w
E o
LU o
o~
O_ —
o
(=]
8 .
(=} T T T I T T
0 100 200 300 400 500
trees

Figure 6. Plot of Error Rate Against Number of Trees

Based on the evaluation of the Random Forest algorithm using a confusion matrix for
multi-class classification of test data, it was found that the classification accuracy was
99.99%. Table 3 shows that the random forest model was able to accurately classify 195,698
out of 195,715 data according to their actual class. Specifically, it correctly predicted 4,491
data for class 1, 27,799 data for class 2, 62,186 data for class 3, 62,980 data for class 4,
25,651 data for class 5, and 12,591 data for class 6.




Sofia Debi Puspa, Fani Puspitasari, Joko Riyono,
Christina Eni Pujiastuti, David Leon Bijlsma, Joseph Andrew Leo

Table 3. Confusion Matrix Random Forest on Testing Data

Actual
Classl1 Class2 Class3 Class4 Class5 Class 6
Class 1 4491 6 0 0 0 0
. Class 2 0 27799 0 0 0 0
Prediction 265 3 0 0 62186 5 0 0
Class 4 0 0 0 62980 4 0
Class 5 0 0 0 0 25651 2
Class 6 0 0 0 0 0 12591

Table 4. Random Forest Algorithm Evaluation
Precision  Recall  Specificity

Class1 99,867%  100% 99,99%
Class2  100% 99,98% 100%
Class3 99,99%  99,99% 100%
Class4 99,99%  99,99% 100%

Class5 99,99%  99,98% 100%

Class6  100% 99,98% 100%

Table 4 displays the precision, recall, and specificity values used to evaluate the
random forest model. The accuracy, precision, and recall values produced from the
evaluation showed high values, indicating that the random forest algorithm performs well
and effectively classifies data. The algorithm determines suitable promotional vouchers
based on customer purchasing power level data, which helps handle large volumes of data.
Naive Bayes Classification Analysis Results

Applying the Naive Bayes classification algorithm to test data produces a multi-class
confusion matrix, as seen in Table 5. The model achieved an accuracy of 92.99% and
successfully classified 182,002 out of 195,715 customer purchasing power level data
according to their actual class. The algorithm accurately predicted 4,083 data for class 1,
26,275 data for class 2, 57,613 data for class 3, 59,398 data for class 4, 24,116 data for class
5, and 10,517 data for class 6.

In addition, the naive Bayes model has demonstrated high precision and recall results,
as indicated in Table 6. Hence, based on the accuracy, precision, recall, and specificity
results, the Naive Bayes algorithm proves to be highly effective in classifying large volume
customer purchasing power level data.

Table 5. Confusion Matrix Naive Bayes on Testing Data

Actual
Class1 Class2 Class3 Class4 Class5  Class 6
Class 1 4083 314 0 0 0 8
Prediction Class 2 309 26275 1739 0 0 273
Class 3 0 1192 57613 2219 0 174
Class 4 0 0 2834 59398 1191 365
Class 5 0 0 0 1368 24116 1256

Class 6 99 24 0 0 348 10517
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Table 6. Naive Bayes Algorithm Evaluation

Precision  Recall  Specificity
Class1 92,69%  90,91% 99,83%
Class2 91,88%  94,49% 98,62%
Class3 94,14%  92,65% 97,32%
Class4 93,12%  94,30% 96,69%
Class5 90,19% 94% 98,46%
Class6 95,71% 83,5% 99,74%

Comparison of Random Forest & Naive Bayes Algorithms

After analyzing the results of both the random forest and naive Bayes algorithms, it
can be concluded that the random forest method performs better than the naive Bayes method
in predicting the level of customer purchasing power in the case of multi-class classification
of PT. XYZ data, involving large data volumes. The accuracy, precision, and recall values
produced by the random forest method are more significant than the naive Bayes method
(see Table 7). Therefore, determining the prediction of the type of promo voucher based on
the level of customer purchasing power is recommended using a random forest model for
more accurate multi-class classification.

Table 7. Comparison of Random Forest & Naive Bayes Evaluation

Random Forest Naive Bayes
Acc Precision Recall  Specificity Acc Precision  Recall Specificity
Class 1 99,87% 100% 99,99% 92,69%  90,91% 99,83%
Class 2 100% 99,98% 100% 91,88%  94,49% 98,62%
Class 3 0 99,99% 99,99% 100% o 94,14%  92,65% 97,32%
Class4 2099% 999006  99.09%  100%  2%9% 931206 9430%  96,69%
Class 5 99,99% 99,98% 100% 90,19% 94% 98,46%
Class 6 100% 99,98% 100% 95,71%  83,5% 99,74%
CONCLUSION

This research aims to classify the level of purchasing power of PT customers. XYZ
using random forest and naive Bayes methods in multi-class classification cases. This
classification will determine the type of promotional voucher that will be offered to
customers according to the level of purchasing power and time. The data used is sales
transaction data per day from January 1, 2022, to December 31, 2022, where this period is
the transition era of the COVID-19 pandemic. The data consists of 416,603 row data and 7-
column data, where the data is divided into training data (75%) and testing data (25%). This
division is the best parameter in the experiment. Random forest and naive Bayes methods
methods are effective for large data volumes. Evaluation using the random forest method
produces an accuracy of 99.99%, while the performance of the Naive Bayes algorithm has

an accuracy of 92.99%. The random forest method's precision, recall, and specificity values
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are also higher than those of the naive Bayes algorithm. Therefore, it can be concluded that
the performance of the random forest method is better than the naive Bayes method in the
case of multi-class classification in predicting the level of customer purchasing power at PT.
XYZ. This means that in determining the type of promotional voucher based on the
customer's purchasing power level, it is recommended that PT. XYZ uses a random forest

model for more accurate multi-class classification.
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ABSTRACT
Cases of the COVID-19 pandemic are gradually decreasing every day in Indonesia, but the impact
of the COVID-19 pandemic has greatly affected various sectors, especially the economy and
business. Sales transactions have not yet reached the company's target due to weak public purchasing
power. The accuracy of customer segmentation analysis and attractive promo voucher offers are
needed to increase the opportunity for people's purchasing power for a product. This study aimed to
predict the level of customer purchasing power using the random forest and naive Bayes methods in
the case of multi-class data classification at PT. XYZ. The classification is carried out to determine
the type of promo voucher suitable to be offered to customers according to the level of customer
purchasing power. The data used is historical daily transaction data from January 1, 2022, to
December 31, 2022, which is the transition period for the COVID-19 pandemic. Evaluation using
the random forest method produces an accuracy of 99.99%, while the naive Bayes method produces
an accuracy of 92.99%. The random forest and naive Bayes methods can work very well on large
data volumes. However, from the comparison results, it can be concluded that the performance of
the random forest method is better than the naive Bayes method in the multi-class classification case

in predicting the level of customer purchasing power at PT. XYZ. )
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PRELIMINARY

In recent years, there has been an exponential positive growth in the volume of data
in the big data phenomenon. Apart from increasing volume, the variety and complexity of
data is also experiencing rapid development. The impact of the big data phenomenon is very
significant in various sectors, especially the business sector. Today's business competition is
determined by the ability to process data to achieve optimal user solutions (Riahi & Riahi,
2018). According to (Romero et al., 2021), studying the current situation based on Business

Intelligence (B1) in the economic and business fields can positively impact making effective
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and accurate decisions in companies. This includes acquiring analytical skills, IT
capabilities, business knowledge, and communication skills. The goal is to enhance a
company's market position with innovative solutions and gain a competitive edge in
business.

COVID-19 emerged in Wuhan, China, in December 2019 and has devastated global
health. It was declared a pandemic by the WHO on March 11, 2020. Lockdowns and
quarantine measures have been implemented worldwide to contain its spread. Capital
markets have been affected due to uncertainty around its impact on investments (Parwati et
al.,2023). In Indonesia, the COVID-19 virus spread rapidly in 2020, leading to restrictions
on community activities. This has caused many companies to reduce output capacity by
decreasing working hours and stopping machine use. Some businesses were forced to stop
operating due to regulatory factors. This has had a significant impact on multiple sectors and

has slowed down the Indonesian economy (Badan Pusat Statistik, 2020).

Report on COVID-19 Cases in Indonesia

Figure 1. Covid-19 Daily Case Graph

Source: (Komite Penanganan Covid-19 & Pemulihan Ekonomi Nasional, 2023)

In 2021, COVID-19 cases decreased despite a rise in daily new cases in February-
March 2022. Daily new cases gradually reduced until December 2022, as shown in Figure
1. This period marked Indonesia's transition from the pandemic, with some business sectors
recovering. However, people's purchasing power is still weak, and sales transactions have
yet to reach company targets. PT. XYZ is one such company that has started to improve
during this transition period.

PT. XYZ operates in the food and beverage (F&B) sector and has 200 outlets
throughout Indonesia. PT. XYZ grows along with digitalization, where more than 70% of
sales come from online orders. Therefore, to increase people's purchasing power, it is
necessary to offer attractive & targeted types of promotional vouchers. Sales transaction data

at PT. XYZ has a large data volume with complexity, including menu variations, voucher
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types, channels, and many stores with varying customer purchasing power. So, it is necessary
to use a data mining-based algorithm to determine the right promotional voucher offer by
classifying the purchasing power level of PT customers. XYZ. Accurate analysis based on
purchasing power and consumer behavior will increase the opportunity to purchase products
offered by marketers (Rahim et al., 2021).

Classification is a data mining technique that predicts future trends based on
historical data. [t falls under the category of predictive mining, which is a type of supervised
learning. There are various methods of classification, such as decision trees, the C4.5
algorithm, random forest, naive Bayes, support vector machine, neural network, and more.
Based on research findings by (Schonlau & Zou, 2020), random forest models have higher
prediction accuracy than parametric models like linear regression and logistic regression.
Multiclass outcomes and regressions yield greater performance improvements than binary
outcomes. Additionally, it has a feature selection process that enables the model to work
efficiently on complex parameters of big data (Pavlov,2019).

According to a research study conducted by (Zaw et al., 2019), the Naive Bayes
method was able to accurately detect 81.25% of tumor images and 100% of non-tumor
images, resulting in an overall accuracy rate of 94%. The study concluded that Naive Bayes
is a reliable and fast method for detecting brain tissue abnormalities. In addition, another
research study conducted by (Putro et al., 2020) found that Naive Bayes was effective in
customer classification, achieving a precision value of 100%, a recall value of 91%, and an
accuracy value of 92%. The Naive Bayes method can also be used for sentiment analysis
and has good processing time complexity on big data during text classification, where the
algorithm is used as a classification engine (Aprilia et al., 2021). These results highlight the
effectiveness and efficiency of Naive Bayes and Random Forest methods in various
classification applications.

Based on the explanation above, this research aims to predict the most suitable
promotional voucher offer by classifying the level of customer purchasing power using the
Random Forest and Naive Bayes methods. Furthermore, the model evaluation results will
compare the performance of the Random Forest and Naive Bayes methods to determine the
best modeling approach. The benefit of this research is providing insights into the most
effective method for classifying customer purchasing power levels, helping the marketing

team to create customer segmentation and market analyses.
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METHODS

Data mining is a big data analysis technique to find patterns and meaningful
relationships hidden in data. Data mining generally processes data originating from
observations with large data volumes. As a result, data mining is connected to various other
scientific fields, including mathematics (particularly optimization), computer science,
machine learning, artificial intelligence, image processing, text mining, and others

(Durugkar et al., 2022).

Business
Understanding

L4
Data
Understanding

!

Data Training
Preparation Dataset

}

» Modelling e

l

Evaluations

Testing Dataset ——

A

Deployment

Figure 2. Flowchart Research

Cross-Industry Standard Process for Data Mining (Crisp-DM) is a data mining
process model (data mining framework). CRISP-DM explicitly introduces business
understanding and data understanding as the primary foundation for digging deeper insights
to achieve business goals. The research flowchart is shown in Figure 2, and the model life
cycle of the CRISP-DM process in this research is as follows (Schroer et al., 2021).

1. Business Understanding

The following are the stages of business understanding:

a. Determine business goals
The first step of this research is to identify the problem and further investigate the
company's business objectives, products, and sales system by conducting interviews with

relevant parties.
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b. Conducting an assessment
Evaluating the data availability and assessing the situation to determine whether the data
held follows the analysis needs.
c. Determining data mining objectives
In this research, the data mining method aims to obtain knowledge in predicting the
suitable type of voucher offer based on customers' level of purchasing power from each
outlet location.
2. Data Understanding
The process of data understanding begins with collecting initial data and the results
of activities as a first step in getting to know the data well. This helps to identify initial
insights and interesting subsets of the data, which can be used to form hypotheses about
valuable information. The data used in this research is primary data with 416,603 sales
transaction data, including holidays. This data is daily sales transaction data from 200 outlets
across Indonesia.
3. Data Preparation
The data preparation stage involves all activities in forming the dataset that will be
used in modeling. At this stage, attribute selection, table formation, transformation, and data
cleaning are carried out to remove missing values and outliers until the data is ready for
modeling. The data variables used in this research are outlet location, transaction time,
channel, and average ticket (AT), which have been divided into several classes according to
the level of purchasing power.
4. Modeling
In this stage, we first visualize the data and then select and implement data mining
techniques to solve the problem. For this research, we utilized the Random Forest and Naive
Bayes algorithms. The data for classification was divided into two groups- training data and
testing data with the assistance of R Studio Statistical Computing software.
5. Evaluations
Evaluation is used to determine the level of accuracy or error rate in a model that has
been created. This helps to assess the model's effectiveness in solving a particular problem.
Additionally, evaluation can be used to compare the performance of different algorithms that
are used to solve the same problem.
6. Deployment
After evaluating the modeling results, the Decision Support System (DSS). is

implemented to predict suitable vouchers based on customer's purchasing power. It is
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important to monitor the models for accuracy in case of operational changes. For this
research, primary data was sourced from PT. XYZ covers the period between January 1,
2022, and December 31, 2022, which is the transition period for the COVID-19 pandemic,
where the Indonesian economy is starting to recover from the impact of the pandemic. The
classification analysis was conducted using the Random Forest & Naive Bayes method using
R statistical computing software.

Random forest was designed by (Breiman, 2001), which is a supervised learning
method developed from the work of (Amit & Geman, 1997; Ho, 1998; Dietterich, 2000).
This method significantly improves performance compared to single tree classifiers such as
C4.5. Random forest is a powerful tool for prediction modeling because it can handle
datasets with a large number of predictor variables. However, it is often beneficial to
minimize the number of predictors needed to obtain accurate outcome predictions to improve
efficiency. Random forest is a combination of several predictor trees called decision trees,
such that each tree depends on the values of a random vector sampled independently and
with the same distribution for all trees in the forest (Breiman, 2001). Random forest
prediction results are obtained through the majority of results from each individual decision
tree, namely through voting for classification and averaging for regression. A Random Forest
consisting of N trees can be formulated in the equation (1) below

1(y) = argmaxc(X5=1 Ih,¢)=c) (1)
where [ is the indicator function and h,, is the n-th tree (Speiser et al., 2019).

The random forest algorithm can be divided into two stages, namely, forming a
random forest and then making predictions from the random forest classifier formed in the
first stage. The formation of a random forest can be briefly explained through the following

pseudocode in Figure 3 (Robin & Jean-Michel, 2020):

1. Randomly select k features from a total of m features, where k << m (k is
much smaller than m)

Among k features, calculate node d using the best-split point

Split nodes into daughter nodes using the best split

Repeat steps 1 to 3 until [ nodes are reached

Create a forest by repeating steps 1 to 4 n times to form n trees

5 [ R

Figure 3. Pseudocode of Random Forest

The Naive Bayes method is a classic classification technique that utilizes statistical
calculations, specifically Bayes' Theorem. The main feature of Naive Bayes classification is

the strong assumption that all parameters are independent. Thomas Bayes, a British
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statistician, proposed this method, which involves predicting future possibilities based on

previous experiences. Bayes' theorem can be written in equation (2)

P(X|C)P(C)
P00 (2)

where P(C|X) is a posterior, P(X|C) is a likelihood, P(C) is class prior probability, and

P(C|X) =

P(X) is predictor prior probability(Kubat, 2021). Naive Bayes classification estimates the

probability equation in (3) & (4) as follows :

P(y) == (3)
Plxly) === @)

where 7 is the total number of data points in the training data set; n,, is the number of target
data points of class y: n, N x; is the number of data points with target class y; and { is an
attribute variable of x; (Makruf et al., 2021).
By using the maximum likelihood estimation principle, Naive Bayes classification
determines the most probable category for a given sample (Larose & Larose, 2019).
P(Ci|X) = Max{P(C1]X), P(C2|X), ..., P(Cp|X) } (5)
Suppose the sample X = (Ay, Ay, ..., Ay) is an attribute vector, Aj is the jth attribute which
may have several different value x;. [n Naive Bayes classification, it is assumed that the

attributes are independent of each other, so:

P(X|C)) = T2, P(A; = %1C) (6)
M. p(A; = x;|Ci )pc))
PG = M2l ‘MJ' 2 (7
1 .
Let oo =a (> 0), that is P(C;|X) = a [T5; P(4; = x;|C;) P(C) (8)

Bayesian decision theory, a fundamental approach to decision-making under the
probability framework, makes optimal classification decisions based on probabilities and
costs of misclassification when all relevant probabilities are known. The pseudocode for the

Naive Bayes classifier algorithm is briefly shown in Figure 4 (Zhou, 2021).
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/ 1. Read the training dataset T \

2. Calculate the mean and standard deviation of the predictor variables in each

class

3. Repeat then calculate the probability of f; using the gauss density equation
in each class until the probability of all predictor variables (fi, f5, f3, -« , fn)
has been calculated

4. Calculate the likelihood for each class

\ 5. Get the greatest likelihood /

Figure 4. Psendocode of Naive Bayes

Table 1 shows the confusion matrix for the multi-class classification case with k
classes. Furthermore, from the confusion matrix, an evaluation of the algorithm's
performance is calculated based on accuracy, precision, recall (sensitivity), and specificity
sequentially using the formula shown in equations (9), (10), (11), and (12) where TP refers
to truly identified as a positive result, TN refers to truly identified as negative, FP refers to
falsely identified as positive result and FN refers to falsely identified as negative result
(Markoulidakis et al., 2021).

Table 1. Confusion Matrix Form for Multi-Class Classification

Actual
Class1  Class 2 Class k
Class 1 fi1 fiz fik
Prediction Cla:ss 2 f?l fZ:Z fzzk
Class k fia fiz fr
_ ke
Accuracy = LoV Coy )
. . _ TP(Cy)
Precision of Class C; = TRC)+FRC) (10)
_ TP(C)
Recall of Class C; = TP PN (11)
El'nil Z¥:1Ci,k
- = iz k=j
Spcificity of Class C; _J_ELZE:NL!« (12)
k]
RESULT AND DISCUSSION

Data Description
At PT. XYZ, the sales transaction app, provides valuable insights into overall sales

volume and product performance. However, some limitations need to be addressed:
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1. It is necessary to determine the appropriate type of voucher promo based on the level of
purchasing power of customers.

2. The type of voucher offered does not consider transaction times during high and low sales
volume periods on specific dates.

3. The app does not provide additional information, such as sales predictions and analysis
of factors influencing sales. Therefore, supporting data is needed for informed decision-
making by the Business Director.

Data preparation is proposed in this research after carrying out business understanding
and data understanding. In data preparation, data cleaning, feature selection, data
transformation, viewing data dimensions, reviewing the structure of the input dataset, and
checking for missing data from certain customers are carried out. In detail, the features of
the dataset are shown in Table 2 to provide a more comprehensive understanding.

Table 2. Dataset After Pre-Processing

No Column Type Details
1  Location Factor Location of outlets spread across Indonesia, such as
(Class Object)  Bali, Jakarta, West Java, Central Java, South
Sumatera, North Sumatera, and others.

2 Month Factor Month of sales transaction such as January,
(Class Object) February, March, etc.
3 Week in year Factor Period per week where sales transactions occur
(Class Object)  such as week 1, week2, week3, ..., and week 52
4 Quartal Factor Sales transaction quarter period such as Q1,Q2, Q3
(Class Object)  and Q4.
5  Channel Factor Types of transaction services such as Gojek, Grab,
(Class Object)  Shopeefood, Traveloka, Dine In, Carry Out and
others.
6 AT Integer Average Ticket is the average price paid per
customer in one visit
7  Decision Factor Class types on customer purchasing power are

(Class Object)  divided into 6 classes

Figure 5 shows the distribution of location and channel variables through histogram
visualization. Five locations have the highest outlets, including Jakarta, Bodetabek (Bogor,
Depok, Tangerang, Bekasi), West Java, East Java, and Central Java, which show the highest
sales of PT. XYZ in meeting higher raw material inventories. Moreover, for channels, the
five highest types of service are Carry Out, Grab, Gojek, Applications, and Shopeefood,
which show that the highest service interest is purchasing in stores via Carry Out. However,
the influence of e-commerce such as Grab, Gojek, and Shoppefood is enormous in online

purchases of PT. XYZ.
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Location Channel
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Figure 5. Variable Distribution

Random Forest Classification Analysis Results

The classification of offering the suitable voucher type to customers uses the Random
Forest and Naive Bayes algorithms. This research divides the data into training and testing
data with proportions of 75% and 25%, respectively. This division is the best parameter in
experiments that have been carried out previously. The analysis results with random forest
used a number of trees of 500 to obtain a minimum error of 0.01% (see Figure 6). The more
trees used, the smaller the error obtained, but in PT. XYZ transaction data will have the

smallest error by using 500 trees.

modelRF

0.06 0.08

1
o ——— =

0.00 0.02 0.04
1 |

Error

0 100 200 300 400 500

trees

Figure 6. Plot of Error Rate Against Number of Trees

Based on the evaluation of the Random Forest algorithm using a confusion matrix for
multi-class classification of test data, it was found that the classification accuracy was
09.99%. Table 3 shows that the random forest model was able to accurately classify 195,698
out of 195,715 data according to their actual class. Specifically, it correctly predicted 4,491
data for class 1, 27,799 data for class 2, 62,186 data for class 3, 62,980 data for class 4,
25,651 data for class 5, and 12,591 data for class 6.
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Table 3. Confusion Matrix Random Forest on Testing Data

3] Actual
Class 1 Class2 Class3 Class4 Class5 Class 6
Class 1 4491 6 0 0 0 0
Prediction Class 2 0 27799 0 0 0 0
Class 3 0 0 62186 5 0 0
Class 4 0 0 0 62980 4 0
Class 5 0 0 0 0 25651 2
Class 6 0 0 0 0 0 12591

Table 4. Random Forest Algorithm Evaluation
Precision  Recall  Specificity

Class 1 99867%  100% 99.99%

Class 2 100% 99 .98% 100%

Class 3 99,99%  99.99% 100%
Class4  99,99%  99.99% 100%

Class 5 99,99%  9998% 100%
Class6  100%  9998%  100%

Table 4 displays the precision, recall, and specificity values used to evaluate the
random forest model. The accuracy, precision, and recall values produced from the
evaluation showed high values, indicating that the random forest algorithm performs well
and effectively classifies data. The algorithm determines suitable promotional vouchers
based on customer purchasing power level data, which helps handle large volumes of data.
Naive Bayes Classification Analysis Results

Applying the Naive Bayes classification algorithm to test data produces a multi-class
confusion matrix, as seen in Table 5. The model achieved an accuracy of 92.99% and
successfully classified 182,002 out of 195,715 customer purchasing power level data
according to their actual class. The algorithm accurately predicted 4,083 data for class I,
26,275 data for class 2, 57,613 data for class 3, 59,398 data for class 4, 24,116 data for class
5, and 10,517 data for class 6.

In addition, the naive Bayes model has demonstrated high precision and recall results,
as indicated in Table 6. Hence, based on the accuracy, precision, recall, and specificity
results, the Naive Bayes algorithm proves to be highly effective in classifying large volume
customer purchasing power level data.

Table 5. Confusion Matrix Naive Bayes on Testing Data

Actual
Class 1 Class2 Class3 Class4 Class5  Class 6
Class 1 4083 314 0 0 0 8
Prediction Class 2 309 26275 1739 0 0 273
Class 3 0 1192 57613 2219 0 174
Class 4 0 0 2834 59398 1191 365
Class 5 0 0 0 1368 24116 1256

Class 6 99 24 0 0 348 10517

1369




1370 Customer Segmentation Analysis Using Random Forest & Naive Bayes Method In The
Case of Multi-Class Classification at PT. XYZ

Table 6. Naive Bayes Algorithm Evaluation

Precision  Recall  Specificity
Class 1 92,69%  9091% 99 83%
Class2  91.88%  9449% 98.62%
Class3  94,14%  92.65% 97.32%
Class4  93,12%  9430% 96.69%
Class 5 90,19% 949 98.46%
Class 6 95,71% 83.5% 99.74%

Comparison of Random Forest & Naive Bayes Algorithms

After analyzing the results of both the random forest and naive Bayes algorithms, it
can be concluded that the random forest method performs better than the naive Bayes method
in predicting the level of customer purchasing power in the case of multi-class classification
of PT. XYZ data, involving large data volumes. The accuracy, precision, and recall values
produced by the random forest method are more significant than the naive Bayes method
(see Table 7). Therefore, determining the prediction of the type of promo voucher based on
the level of customer purchasing power is recommended using a random forest model for
more accurate multi-class classification.

Table 7. Comparison of Random Forest & Naive Bayes Evaluation

Random Forest Naive Bayes
Ace Precision Recall  Specificity Acc Precision  Recall Specificity

Class 1 99.87% 100% 99.,99% 9269%  9091% 99 83%
Class 2 100% 99 98% 100% 9188%  9449% 98,62%
Class 3 99,99% 99.99% 100% 94,14%  92,65% 97,32%

: : " : : ,
Class 4 99.99% 99.,99% 99.99% 100% 92,99% 93,12%  94,30% 96,69%
Class 5 99,99% 99 98% 100% 90,19% 94% 98 .46%
Class 6 100% 99 98% 100% 9571%  835% 99,74%

CONCLUSION

This research aims to classify the level of purchasing power of PT customers. XYZ
using random forest and naive Bayes methods in multi-class classification cases. This
classification will determine the type of promotional voucher that will be offered to
customers according to the level of purchasing power and time. The data used is sales
transaction data per day from January 1, 2022, to December 31, 2022, where this period is
the transition era of the COVID-19 pandemic. The data consists of 416,603 row data and 7-
column data, where the data is divided into training data (75%) and testing data (25%). This
division is the best parameter in the experiment. Random forest and naive Bayes methods
methods are effective for large data volumes. Evaluation using the random forest method
produces an accuracy of 99.99%, while the performance of the Naive Bayes algorithm has

an accuracy of 92 99%. The random forest method's precision, recall, and specificity values
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are also higher than those of the naive Bayes algorithm. Therefore, it can be concluded that
the performance of the random forest method is better than the naive Bayes method in the
case of multi-class classification in predicting the level of customer purchasing power at PT.
XYZ. This means that in determining the type of promotional voucher based on the
customer's purchasing power level, it is recommended that PT. XYZ uses a random forest

model for more accurate multi-class classification.
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