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ABSTRACT 
 

 
Nickel (Ni)-rich single-phase nickel-copper (Ni-Cu) alloy coatings were 

produced on aluminum (Al) substrates by electrodeposition in stabilized citrate 
baths. Electrodeposition experiments were performed at four different current 
densities. Increasing the current density resulted in the metal deposition rate 

increasing faster than the hydrogen evolution rate; thus, the cathodic current 
efficiency increased. The crystal systems of the Ni-Cu alloys were face center 
cubic (fcc), with the (111) plane as the preferred crystal plane. Scanning electron 

microscopy with energy dispersive X-ray spectroscopy (SEM-EDS) 
measurements showed that the Ni content in the coating increased with 
increasing current density. The Ni-Cu 40 sample had the most Ni content and 

showed a homogeneous and compact morphology. It was found that the higher 
the concentration of Ni in the solution, the smaller the grain size. Measurements 

recorded with a vibrating sample magnetometer (VSM) showed that the Ni-Cu 
40 sample provided magnetic saturation, with the highest value being 0.108 
emu/g. The microhardness method produced 404 HV on the Ni-Cu 40 sample. 

In conclusion, higher current densities were associated with a higher Ni 
composition and increased thickness, which were responsible for the increases 
in the magnetic properties and hardness. 

doi: 10.5829/ije.2023.36.01a.00 

 
 

NOMENCLATURE 

Ce Cathodic current efficiency Wi Initial weight of the substrate 

σ Lattice strain Wf Weight 

Ws Final weight of the substrate I Total current 

Wm 
Ratio of the final weight of the 
substrate 

t Deposition time 

μ 
Texture coefficient of the 

unique plane 
F Faraday’s constant 

I(hkl) Measured intensity fni Nickel deposit weight ratio 

mcu Copper’s atomic weight mni  Nickel’s atomic weight  
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1. INTRODUCTION1 
 

Researchers widely study nickel (Ni) and copper (Cu) 
alloys as engineering materials due to their unique 

mechanical, magnetic, and anti-corrosion properties 
[1, 2]. Ni-Cu alloys are known as monel in the 
industry and are typically comprised of 70 wt% Ni 

and 30 wt% Cu [3]. These alloys have outstanding 
capabilities in acidic and alkaline environments [4]. 
Ni-Cu alloys are single-phase alloys throughout their 

composition on the phase diagram, and these alloys 
formed because Ni and Cu are fully soluble in their 

solid and liquid states [5]. Ni and Cu both have a face 
center cubic (fcc) crystal structure, and they have 
almost similar electronegativity and atomic radii [6, 

7].  
Given that conventional casting as a manufacturing 
method for monel results in substantial production 

costs and that Ni-Cu alloy coated on aluminum (Al) 
has potential as a replacement for monel as a bulk 

material [8], Al-based metals have received 
considerable attention [9, 10]. They are lightweight 
and demonstrate high resistance to wear and 

corrosion and a high strength–stiffness combination 
[11]. 
Several techniques have been proposed to 

successfully modify the surface morphology and 
chemical composition, including sol-gel, chemical 
etching, chemical vapor deposition, thermal 

embossing, and electrodeposition [12, 13]. The 
electrodeposition technique is a cost-effective, 

scalable, and easy-to-control process for coating Ni-
Cu alloy [14]. Specific methods have also been 
developed to determine the structure, morphology, 

and phase composition of the coated Ni-Cu alloys 
[15, 16]. Goranova et al. investigated how changing 
the concentration of Ni ions and the current density 

affected the structure and composition of Ni-Cu 
alloys formed by electrodeposition in alkaline citrate 

baths [17]. Higher concentrations of Ni ions in the 
bath led to notably smoother deposits and enhanced 
current efficiency. However, producing a uniform Ni-

Cu coating can be challenging due to the difference 
in reduction potential between Ni and Cu. The 
reduction potential of Ni atoms is -0.25 V vs. SHE, 

and that of Cu atoms is +0.34 V vs. SHE [18]. As a 
result, controlling the concentrations of Ni and Cu is 

vital. Complexing agents must be added to narrow the 
potential difference between Ni and Cu. The most 
frequently used complexing agent is citrate due to its 

low toxicity, cost-effectiveness, and buffering 
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characteristics [19]. 
The electrodeposition process affects the physical 

properties of the resultant Ni-Cu alloy, as does the 
current density. A high current density causes the 

crystal plane to be oriented in the (111) plane, the 
lattice size to be smaller, and the atomic distance to 
be less [20]. The grain size becomes smaller when the 

current density is high, and the morphological shape 
resembles that of a cauliflower [21]. As a result of a 
high current density, the coating will be thicker, and 

the composition of the Ni weight fraction will also be 
higher. The amount of Ni deposited on the substrate 

and the thickness of the coating both have an impact 
on the product’s magnetic properties [22]. In addition, 
a smaller grain size results in an increase in hardness 

[23]. Kanukaran et al. reported a hardness of 153 HV 
when the current density was 40 mA/cm2 [24], and 
Karunakaran and Pugazh Vadivu reported a magnetic 

saturation value of 0.0004 emu/g at 40 mA/cm2 [25]. 
Nevertheless, the researchers did not examine the 

impact of the coating electrodeposition factors, 
structure, and morphology on the magnetic and 
hardness properties. 

The aims of this research were 1) to produce a Ni-rich 
Ni-Cu alloy coating on Al via electrodeposition and 
2) to investigate the link between magnetic and 

hardness properties and the coating’s microstructure 
and surface morphology. We varied the current 
density, and the process was conducted at room 

temperature. We examined the influence of various 
process variables on the cathodic current efficiency, 

structure, morphology, composition, grain size, and 
thickness of the produced coatings. Finally, the 
magnetic properties and hardness of the coatings 

were investigated.  
 
2. MATERIAL AND METHODS 

 
2. 1. Material and Electrodeposition Process     The 

chemical composition of the Al substrate (cathode) 
used was Fe = 1.63 wt%, Mg = 1.49 wt%, and Al = 
96.88 wt%. The chemical composition of the Ni 

(anode) used was Al = 0.02 wt%, Ca = 0.04 wt%, Fe 
= 0.23 wt%, Y = 1.61 wt%, Zr = 0.04 wt%, Nb = 0.05 
wt%, and Ni = 98.01 wt%. The chemical composition 

of the Cu (anode) used was P = 0.22 wt%, Cd = 0.684 
wt%, Si = 0.137 wt%, and Cu = 98.959 wt%. The Al 

was cleaned from the oxide coating with sandpaper 
before deposition using DELTA D68H for 5 min. Ni-
Cu electrodeposition was carried out using a SANFIX 

305 E DC power supply. The samples produced using 
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a current density of 15 mA/cm2, 20 mA/cm2, 30 
mA/cm2, and 40 mA/cm2 were designated as Ni-Cu 
15, Ni-Cu 20, Ni-Cu 30, and Ni-Cu 40, respectively. 

Table 1 shows the bath composition and deposition 
parameters. 

 
TABLE 1. Bath composition and deposition 
parameters 

Bath composition and 

condition 

Quantity 

NiSO4.6H2O (Merck) 0.5 M 

CuSO4.5H2O (Merck) 0.04 M 
Na3C6H5O7 (Merck) 0.2 M 

pH 4.2 
Temperature 25 °C 
Deposition time 1 h 

 

2. 2. Characterization     The deposition rate was 
calculated using the previously reported method [26]. 
The following formula, Equation 1, was used to 

calculate the efficiency of the cathodic current [27]: 
 

𝐶𝑒 =
𝑊𝑚

𝑊𝑓
⁄  (1) 

 
Wm and Wf were calculated using Faraday’s law, as 

shown in Equations (2) and (3). 
 

𝑊𝑚 = 𝑊𝑠 − 𝑊𝑖 , (2) 

𝑊𝑓 = {(𝑚𝑛𝑖 2⁄ ) ∗ 𝑓𝑛𝑖 + (𝑚𝑐𝑢 2⁄ ) ∗ 𝑓𝑐𝑢}

∗ 𝐼.
𝑡

𝐹
. 

(3) 

 

The crystal structure of the Ni-Cu coating was 
determined using X-ray diffraction (XRD-
PANanalytical Aeris Instrument Suit) (Cu-Kα 

radiation, λ = 0.15418 nm). XRD data were collected 
from 20° to 80° with a step size of 0.020°. The 
Materials Analysis Using Diffraction (MAUD) 

program was used to determine the crystal parameters 
of the sample after Rietveld refinement.  
The preferential crystallite orientation was 

determined from the texture coefficient 𝜇, as shown 

in Equation 4  [28]: 

 

𝜇 =
𝐼(ℎ𝑘𝑙)/𝐼0(ℎ𝑘𝑙)

(
1
𝑁

) ∑[𝐼(ℎ𝑘𝑙)/ 𝐼0(ℎ𝑘𝑙)]
, ( 4) 

 

Based on the XRD results, the lattice strain 𝜎 was 

calculated using Equation ( 5) [29]: 
 

𝜎 = (
𝛽

4 × tan 𝜃
) ( 5) 

 
SEM-EDS (Thermofisher Quanta 650 EDAX EDS 
Analyzer) with 1000× magnification was used to 

analyze the surface morphology of the Ni-Cu 
coatings. EDS was used to determine the chemical 

composition of the coatings, and the statistical 
distribution of grain sizes was calculated using 
ImageJ software. The cross sections of the coated 

samples were also examined to assess how the current 
density and CCE affected the coating thickness. 
Measurement of magnetic properties was conducted 

using a vibrating sample magnetometer (VSM, 
Oxford 1.2H). The hardness of the Ni-Cu coatings 

was measured using a MicroMct® 5100 Series 
Microindentation Hardness Tester. The ATM E384 
standard was used for the tests, which were 

performed with a load of 100 g for 10 s at five places. 
 
3. RESULTS AND DISCUSSION 

 
3. 1. Cathodic Current Efficiency and Deposition rate     

Figure 1 depicts the relationship between the average 
CCE and deposition rate in the citrate electrolyte 
bath. The CCE was found to be high, with a value of 

82–89%. The basic concept of current efficiency can 
be understood as the fraction of total current used for 
metal plating [30]. Apart from metal deposition, 

hydrogen evolution is the only other necessary 
process that must occur on the substrate surface. Ni 
and Cu precipitation are both antagonistic to the 

hydrogen evolution reaction. In this study, the metal 
deposition rate increased faster than the hydrogen 

evolution rate when the current density increased 
from 15 to 40 mA/cm2; hence, the CCE increased. 
The highest CCE (89.96%) was associated with the 

Ni-Cu 40 sample, and the lowest CCE (82.55%) was 
associated with the Ni-Cu 15 sample. Basori et. al 
[26] and Syamsuir et. al [31] found that the deposition 

rate and current efficiency are considered linear.  
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Figure 1. The cathodic current efficiency and 
deposition rate at a current density of 15, 20, 30, 

and 40 mA/cm2 
 

3. 2. Structural Properties     Figure 2(a) depicts the 
XRD spectra of the Ni-Cu alloy samples produced at 
various current densities. According to the XRD 

analysis results, each Ni-Cu alloy sample consisted of 
a single phase with an fcc structure. The evolution of 
the lattice parameters of the Ni-rich (111) phase over 

the range of current densities is shown in Figure 2(b). 
The peaks of each sample were found between the 

peaks of the fcc of 2θ = 43.3o for pure Cu and 2θ = 
44.5 o for pure Ni [32, 33]. As the Ni content of the 
alloy coating increased, the diffraction angle also 

increased. 
 

 
(a) 

 
(b) 
Figure 2. (a) X-ray diffraction spectra of Ni-Cu 
coatings electrodeposited at various current 

densities and (b) the extended view of the Ni-Cu 
(111) plane, showing peak shifts 

 
Crystal size calculation using MAUD resolved 
refinement was used to determine the size of the 

crystallites in the Ni-Cu alloys, and the results (Table 
2) show that the crystallite size of the Ni-Cu coating 
ranged from approximately 24 to 50 nm. The 

crystallite size of a pure Ni layer is 60 nm, meaning 
that the Ni-Cu alloys had smaller crystallite sizes than 

a pure Ni layer. This result is also similar to that 
obtained by Li et al. [34]. In contrast to the typical 
watt-Ni coating, we found that the presence of a 

sodium citrate complexing agent resulted in a finer 
crystallite size. This is consistent with the findings of 
Sarac and Baykul [35], who observed that Cu atoms 

affect grain refinement in Ni-Cu alloys. Cu atoms can 
restrain the surface diffusion of Ni atoms during the 

deposition process and inhibit the growth of 
crystallites. 
The evolution of the crystallographic orientation of 

the Ni-Cu coatings produced with varying current 
densities is shown in detail in Figure 3. It can be 
observed that a strong (111) fiber texture appeared in 

all the samples, while the (002) texture gradually 
decreased as the current density increased. 
The µ values of different crystal planes are also used 

to evaluate the degree of crystallographic orientation 
[34]. Moreover, the Ni-Cu coating electrodeposited at 

the current density of 40 mA/cm2 was found to have 
a strong (111) texture. 



 

 

 

Figure 3. The simulated 2D pole figures for the (a) 
Ni-Cu 15, (b) Ni-Cu 20, (c) Ni-Cu 30, and (d) Ni-Cu 
40 samples 

 
 

TABLE 2. Parameters of the Ni-Cu alloys after Rietveld refinement using MAUD 

Sample 

Parameter Ni-Cu 15 Ni-Cu 20 Ni-Cu 30 Ni-Cu 40 

Crystal structure Cubic fcc 

Space group Fm-3m 
Lattice constant (Å) a = b = c 3.582 3.560 3.554 3.545 
Volume (Å3) 45.975 45.152 44.905 44.557 

d-spacing (Å) 1.791 1.780 1.695 1.691 
Crystallite size (nm)  24.55  26.82  32.29  50.78 

Rwp (100%) 3.640 4.484 5.394 5.139 
GOF 1.94 1.72 2.06 2.03 
Lattice strain 0.663 0.453 0.431 0.276 

The texture coefficient for every preference was 
calculated using Equation 4 to ascertain the preferred 
crystal orientation direction of each Ni-Cu alloy 

obtained at the various current densities, and the 
results are shown in Table 3 [32]. 
It seems that the texture coefficient was also dependent 

on the peak current, and the preferred orientation was 
the (111) plane. Li et al. [34] found that the higher the 

current density, the more dominant the (111) plane. 
The findings suggest that the (111) crystallographic 
orientation was preferable for all the Ni-Cu coatings 

electrodeposited at the tested current densities. 
 
TABLE 3. Texture coefficient analysis of Ni-Cu 

deposits 
 

Sample 
µ (hkl) 

[111] [002] [022] 

Ni-Cu 15 1.12 0.86 0.77 
Ni-Cu 20 1.17 0.74 0.81 

Ni-Cu 30 1.18 0.74 0.78 
Ni-Cu 40 1.48 0.34 0.32 

 
The lattice strain of the prepared coatings was 

determined using Equation 5, and Figure 4 illustrates 
the changes in the crystal size and lattice strain of the 
Ni-Cu coatings based on the current density applied in 

the plating bath. The crystal size increased and the 
lattice strain decreased as the current density increased 
[36]. This result aligns with that obtained by Devi et 

al. [33], who showed that the higher the current 
density, the more the crystal size increased. A possible 



 

 

reason for this is that the composition of Ni increases 
as the current density increases. 
 

 
Figure 4. The lattice strain and crystallize size of the 
Ni-Cu alloys coated on Al at various current 

densities 
 
3. 3. Surface Morphology     EDS was used to 

determine the elemental composition of the Ni-Cu 
coatings, and the results are shown in Figure 5 and 
Table 4. Cu and Ni were the only elements present in 

the deposits. The alloy composition was influenced by 
the current density: as the current density increased, 

the Cu content decreased. This phenomenon can be 
caused by the [Ni2+]/[Cu2+] ratio in the bath, which 
changes the composition of Ni and Cu. Goranova et al. 

discovered that as the Cu content of deposits 
decreased, so did the CCE [37]. This phenomenon 
occurs because of the orderly deposition of Ni and Cu 

[38]. In regular deposition, increasing the current 
density leads to an increased proportion of less noble 

metals in the deposited material [39]. In our scenario, 
Ni is the less noble metal. As a result, when the current 
density was higher, the deposits were richer in Ni.  

 

 

Figure 5. Eds graph of the Ni-Cu 15 

 
Another notable feature was that as the current density 

increased, the peak shifted to the right (i.e., to higher 
2θ values). The change in the alloy composition may 

have also caused this peak shift. The Ni concentration 
increased as the current density increased (see Table 
4). Because Ni and Cu combine to produce a single-

phase alloy, the diffraction peak shifted toward that of 
pure Ni as the Ni percentage increased. This finding is 

similar to the observations of Goranova et al. [17], 
who found that the fcc reflection for Ni-rich Ni-Cu 
alloy deposits shifted to the right as the Ni 

concentration increased. Indeed, it is logical to expect 
the Ni-Cu alloy peak to shift as the Ni content increase. 
 

TABLE 4. The chemical composition of Ni-Cu 
coatings on the Al substrate prepared at different 

current densities 
 

Sample Cu, wt% Ni, wt% 

Ni-Cu 15 54.95 45.05 
Ni-Cu 20 39.83 60.17 
Ni-Cu 30 29.80 70.20 

Ni-Cu 40 19.64 80.36 

 
The surface morphological structure and the cross 
section of the coated samples were observed using 

SEM. Figure 6 shows SEM micrographs of the four 
samples’ surface morphological structures. The 
deposits developed a fine-grained and compact 

spherical shape when lower deposition current 
densities were applied (Figure 5(a)). Deo et al. [27] 

and Goranova et al. [37] also observed this 
morphology at low current densities. The shape 
changed to a coarser cauliflower form when higher 

current densities were applied (Figure 6(d)). A 
diffusion-limited deposition mechanism in which a 
multigeneration spherical diffusion layer creates a 

cauliflower shape is likely to produce this type of 
morphology [40]. As the current density increased, the 

cauliflower-like protrusions became more spaced and 
separated, creating gaps. The Ni-Cu 40 sample, 
produced with the highest current density, was found 

to have the largest gaps between the cauliflower-like 
bulges. 
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(b) 

 
(c) 

 
(d) 

Figure 6. Surface SEM images of the deposited Ni-
Cu alloy coatings and plots showing the statistical 
distribution of the grain size 

 
The increased nucleation rate can explain the observed 
decrease in grain size with increasing current density 

[41][42]. Ni-Cu ion flow to the cathode is faster at 
higher current densities. Further investigation is 

needed to determine the exact relationship between the 
current density and the grain size of the coating. In the 
Ni-Cu 15, Ni-Cu 20, Ni-Cu 30, and Ni-Cu 40 samples, 

the peak that corresponded to the (111) plane shifted 
toward the right (see Figure 2b). The reduction in d-
spacing is ascribed to residual stress induced at a 

higher deposition rate [43]. The statistical results of 
the grain size distribution presented in Figure 6 

indicate that the grain size ranged from 4.63 to 1.94 
µm. The decrease in grain size with the increase in 
current density is evident in the data shown in Table 5. 

 
TABLE 5. Average grain size found in each sample 

Sample Average grain size (µm) 

Ni-Cu 15 4.63 ± 0.269 

Ni-Cu 20 4.38 ± 0.365 
Ni-Cu 30 2.28 ± 0.068 
Ni-Cu 40 1.94 ± 0.032 

 

Figure 7 depicts the relationship between the deposited 
alloy composition and the applied current density. 
EDS was used to determine the composition. 

 
Figure 7. The dependence of the deposited alloy’s 
composition (shown as wt% of the single 
electrolytes) on current density 

 
Figure 8 (a–d) displays SEM cross-section images of 

the produced Ni-Cu coatings. The absence of cracks 
between the substrate and coating demonstrates that 
appropriate adhesion occurred between the two 

entities [44]. The thickness of the electrodeposited Ni-
Cu coating was also measured for each sample [27], 
and the following results were recorded: Ni-Cu 15 = 

32 μm, Ni-Cu 20 = 42 μm, Ni-Cu 30 = 49 μm, and Ni-
Cu 40 = 50 μm. The effect of the current density on the 

thickness of the Ni-Cu coating is depicted in Figure 8; 
the thickness increased as the current density increased 
[19]. Hence, a higher current density results in more 

mass and a thicker coating. The findings presented in 
Figure 1 show that as the current density increased, so 
too did the CCE. 

According to Faraday’s law, when the deposition time 
remains constant for all samples, coatings formed at 
lower current densities will be thinner than those 

produced at higher current densities. A thinner 
covering may lead to severe interference from the Al 

substrate. The cathodic current density also affects the 
coating, as Deo et al. [27] discovered that increasing 
the current density improves the thickness of the film 

due to an increase in the CCE. 
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Figure 8. SEM cross-section images of the Ni-Cu 
coating on Al in the (a) Ni-Cu 15, (b) Ni-Cu 20, (c) 
Ni-Cu 30, and (d) Ni-Cu 40 samples 

 
3. 4. Magnetic Properties     Figure 9 depicts the 

magnetic characteristics and fluctuations in the current 
density magnetization measured with a VSM at room 
temperature [45]. The results of the VSM analysis 

demonstrate that the coatings in the Ni-Cu 15, Ni-Cu 
20, Ni-Cu 30, and Ni-Cu 40 samples displayed 
ferromagnetic activity. The low ferromagnetic activity 

of the Cu54.95Ni45.05 alloy film of Ni-Cu 15 could 
be attributed to Ni diffusion in the Cu matrix, as Cu is 

a diamagnetic metal and Ni is a ferromagnetic metal 
[46]. The ferromagnetic properties of the Ni-Cu films 
of Ni-Cu 20, Ni-Cu 30, and Ni-Cu 40 increased with 

the Ni content of the alloy coatings.  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Hysteresis loops of multilayers generated 
at different current densities 

 
As the Ni content of the Ni-Cu alloy coatings 
increased, so did the saturation magnetization (see 

Table 6). Wang et al. reported that saturation 
magnetization depends on the Ni content of Ni-Cu 



 

 

alloy coatings [43]. In addition, Awasthi reported that 
magnetization is enhanced by increasing the coating 
thickness [22]. A possible reason for this enhanced 

magnetization is the magnetic disorder caused by the 
coating. It has been shown that the trend in saturation 

magnetization enhancement is associated with the 
coating level [47]. Demidenko et al. [48] found that 
monel has paramagnetic properties at room 

temperature, while the Ni-Cu alloys in this study had 
ferromagnetic properties. Here, we have improved 
upon the results of previous studies in which 

phosphorus (P) and tungsten (W) were added [25]. In 
this study, the Ni-Cu 40 sample exhibited the strongest 

magnetic properties. 
 
TABLE 6. The results of the magnetic analysis of the 

Ni-Cu/Al samples 

Sample Hc (Oe) Mr 
(emu/g) 

Ms 
(emu/g) 

Ni-Cu 15 143.829 0.00047 0.003 
Ni-Cu 20 140.081 0.004 0.015 

Ni-Cu 30 256.215 0.025 0.094 
Ni-Cu 40 144.023 0.032 0.108 

 
3. 5. Hardness     Figure 10 depicts the dependence of 
the microhardness of the Ni-Cu coatings on the current 

density in the plating bath. From the data presented in 
Figure 10, it is clear that the coating of the Ni-Cu 40 

sample had the highest microhardness value (404 HV). 
In general, the microhardness increased with the 
current density and was attributed to the grain size and 

thickness of the coatings [42]. Pingale et al. found that 
hardness increased with the thickness of the coating 
[19]. The coating thickness could influence the 

hardness of Ni-Cu films [26]. 
 

 

Figure 10. The microhardness of the 
electrodeposited Ni-Cu coatings of the samples 

produced with different current densities 

 
The results indicate that alloys with a greater Ni 
content are mechanically harder. The overall 

dependence of hardness and microhardness on the 
percentage of Ni is shown in Figure 11, and the data 

indicate that microhardness increases as the 
percentage of Ni increase. This result is similar to 
Marenych’s finding that the hardness value is highest 

with the highest Ni composition [49]. 

 

Figure 11. The relationship found between wt% Ni 
and microhardness, based on the data obtained 
from the four experimental samples 

 
Moreover, the hardness reported in previous studies 
that resulted from electrodeposition of Ni-Cu on Al in 

the presence of P was lower than that recorded in the 
present study [24]. This is due to the smaller grain size 

that resulted from applying a different current density. 
In addition, the increase in microhardness reported 
here is related to the role that Ni atoms play in grain 

refinement [31]. Ramkumar et al. [50] reported a 
monel hardness value of 165 HV, which is lower than 
the peak hardness value recorded in the current study. 

4. CONCLUSION 
In this study, Ni-Cu alloys were electrodeposited onto 
Al substrates using citrate baths. The effects of adding 

a citrate solution on the properties of the deposited 
coatings were studied, and the results illustrate that 

single-phase Ni-Cu alloy layers were produced on the 
Al surface at all current densities. The CCE increased 
as the current density increased. The coatings formed 

at lower current densities showed a more compact and 
spherical morphology, while those formed at higher 
current densities showed a less uniform structure with 

a cauliflower-like morphology. Both the surface 
morphology and composition of the coating showed a 

strong dependence on the current density. The Ni-Cu 
alloy coating deposited at a low current density had a 
layer thickness of 32 μm, while the coating deposited 

Commented [WU13]: Hc of Ni-Cu 3, why is it high? 

Commented [H14R13]: The largest Hc means that this 

sample is difficult to demagnetized. It is due to magnetic 
anisotropy. It is predicted, since Ni-Cu 30 has the largest Hc, 

it revealed that the magnetic anisotropy in the Ni-Cu 30 is 

also highest 



 

 

at a high current density had a thickness of 50 μm. The 
saturation magnetization of the coating increased with 
the Ni content in the Ni-Cu alloy and with the coating 

thickness. The hardness increased with the coating 
thickness, grain size, and Ni composition in the 

solution. The hardness of the produced Ni-Cu alloy 
coatings was found to be greater than that of monel. 
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