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Abstract. Crude oil is a vital natural resource needed worldwide and the most demanded commodity. Fluctuating oil prices can 
affect a country’s economic conditions e.g., economic growth, inflation rate, money supply, exchange rate and interest rates. 
Consequently, statistical forecasting methods are needed for a more accurate prediction in period 𝑡 to support decision-making. 
This study aims to predict crude oil prices during the Covid-19 pandemic and compare the performance of crude oil price 
forecasting using the Fuzzy Time Series (FTS) Markov Chain method and Autoregressive Integrated Moving Average (ARIMA) 
method. The data used is daily crude oil prices with West Texas Intermediate (WTI) Standard in US$/barrel from March 3, 2020, 
to March 31, 2022. Forecasting with the FTS Markov Chain method resulted in a mean absolute percentage error (MAPE) of 
2.76%, and root mean square error (RMSE) of 580.3. The best model for ARIMA is ARIMA (0,1,1) which produces MAPE of 
3.85% and RMSE 856.7. Due to the MAPE & RMSE values in the FTS Markov Chain method being smaller than the ARIMA 
method. Hence, forecasting using the FTS Markov Chain has better performance than the ARIMA method in the forecasting of 
crude oil prices during the Covid-19 pandemic. 

INTRODUCTION 

Coronavirus Disease 2019 (Covid-19) is a new type of virus caused by SARS-Cov-2. The new virus variant is 
known to have originated from Wuhan, China and was first discovered in early December 2019 when a patient was 
diagnosed with unusual pneumonia [1]. The Covid-19 virus has quickly infected hundreds of countries in the world 
and has spread to Asia, Europe, the Middle East, America, and other regions. Resulting that in 2020, the World Health 
Organization (WHO) declared that the Covid-19 pandemic was a global pandemic. The Covid-19 pandemic has not 
only affected health, but it has also greatly affected the global economy. 

Crude oil is a commodity that has an important role in the economy of a country. Crude oil as a vital input is 
needed in industrial production processes, especially to generate electricity, run production machines, and transport 
products to the market. In addition, oil is also important for sustainable economic and social development. However, 
it is clearly seen that during the Covid-19 pandemic, crude oil prices fluctuate. It appeared in Fig 1 that since 2019 the 
price of WTI (West Texas Intermediate) crude oil has shown a decline and dipped sharply until April 2020 as a result 
of the Covid-19 pandemic. This is due to the limited space for human activity which has an impact on decreasing 
demand for crude oil and overproduction [2]. Changes in crude oil prices are not only affected by the Covid-19 
pandemic but also influenced by the policies of OPEC (Organization of the Petroleum Exporting Countries) members 
and conflicts in crude oil producing countries. 
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FIGURE 1. The Development of World Oil Supply and Demand 

(Source: www.worldoil.com) 
 

Along with the decreasing number of Covid-19 cases, industrial activity slowly continued to normal until at 
the end of 2021 crude oil prices fluctuated and tended to increase in the international market. In the period October - 
December 2021, the average oil price reached US$ 77.3 per barrel. The increase in the oil price average in 2021 has 
escalated by about 42.2% compared to the oil price average in 2020. Fluctuating changes in oil prices have received 
considerable attention in recent decades because they have a significant political impact. Various attempts were made 
to explain the behavior of oil prices as well as to see the macroeconomic consequences. In Indonesia, fluctuations in 
oil prices have an impact on economic growth over a certain period, domestic inflation, money supply, real exchange 
rates, and interest rates [3]. Due to the resulting impact is being very significant, a statistical forecasting method is 
needed that can accurately predict crude oil prices during the Covid-19 pandemic. 

In this study, oil price forecasting used the Fuzzy Time Series Markov Chain and Autoregressive Integrated 
Moving Average (ARIMA) methods. The ARIMA method is a suitable time series data forecasting method where the 
method can handle data that is not stationary in variance and mean such as crude oil prices data that moves fluctuating. 
ARIMA has been successfully applied at a much larger scale in various fields, mainly due to its easy-to-use concept 
and utility algorithm [4]. For the advantages of the Fuzzy Time Series (FTS) method, in previous research conducted 
by [5] that the forecasting results using the FTS Markov Chain method has a low error rate and has a high degree of 
accuracy. 

The fuzzy time series method was first proposed by Song and Chissom by applying fuzzy logic to develop the 
basis of fuzzy time series. It is a dynamic process of a linguistic variable where the linguistic value is a fuzzy set [6]. 
However, based on the results of previous research by Tsaur that the FTS method modified with the Markov chain 
concept obtained a better level of accuracy than the FTS without Markov chain. The implementation of the Markov 
chain fuzzy time series method was first introduced by Tsaur (2011) in forecasting the Taiwan currency exchange rate 
against the dollar [7]. 

The ARIMA method was discovered by Box and Jenskin (1976). The ARIMA method (𝑝, 𝑑, 𝑞) where 𝑝 
represents the order of the autoregressive process (AR), 𝑑 represents the difference (differencing) and 𝑞 represents the 
order of the moving average (MA) process. Box and Jenkins use ARIMA models for single-variable (univariate) time 
series. The steps of the ARIMA method are model identification, parameter estimation, parameter significance testing, 
diagnostic checking and forecasting [8]. 

Based on the described statement, the purpose of this study is to predict crude oil prices during the Covid-19 
pandemic and compare the performance of forecasting crude oil prices using the FTS Markov Chain method and the 
ARIMA method. Hence, it is hoped that the prediction results can be considered in decision making related to crude 
oil prices for the government and economic practitioners. This study is limited to only entering historical data values 
from oil prices without the influence of exogenous factors on the model. 
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DATA AND METHODS 

The secondary data used in this study is the daily data of West Texas Intermediate (WTI) standard crude oil 
prices during the Covid-19 pandemic, from March 3, 2020, to March 31, 2022. The data is the closing price of crude 
oil in units of US$ per barrel and sourced from http://id.investing.com. The total number of data is 547 data with data 
excluding holidays. 

Fuzzy Time Series 

Fuzzy times series (FTS) was first developed by Song & Chissom (1993). Fuzzy time series defines a fuzzy 
relation formed by determining logical relationship of training data. FTS is a forecasting method with the concept of 
fuzzy logic which can overcome the analysis of data in the form of linguistic value that cannot be handled by classical 
time series methods. 

Suppose 𝑈 is a set of the universe, 𝑈 = {𝑢ଵ, 𝑢ଶ, 𝑢ଷ, … , 𝑢௡} then the fuzzy set 𝐴 of 𝑈 is defined by Equation (1): 

                                                   𝐴 =
௙ಲ(௨భ)

௨భ
+

௙ಲ(௨మ)

௨మ
+ ⋯ +

௙ಲ(௨೙)

௨೙
                                                                (1) 

Where 𝑓஺ is a function member of the fuzzy set 𝐴, 𝑓஺: 𝑈 → [0,1], 𝑓஺(𝑢௜) indicates the grade of membership of 
𝑢௜ in the fuzzy set 𝐴 and 1 ≤ 𝑖 ≤ 𝑛  [9]. 
 
Several definitions of fuzzy time series are [10]: 
Definition 1 
Suppose 𝑋(𝑡) (𝑡 = ⋯ , 0, 1,2, … ) is subset of 𝑹. Let 𝑋(𝑡) be a universe of discourse on a set fuzzy 𝑓௜(𝑡) (𝑖 = 1,2, … ). 
If 𝐹(𝑡) is set of 𝑓௜(𝑡) then 𝐹(𝑡) is referred to as fuzzy time series on 𝑋(𝑡) 

 
Definition 2 
If 𝐹(𝑡) is due to 𝐹(𝑡 − 1) and denoted by 𝐹(𝑡 − 1) →  𝐹(𝑡), it can be written as follows 

                                                          𝐹(𝑡) =  𝐹(𝑡 − 1)   ⃘𝑅(𝑡, 𝑡 − 1)                                                                     (2) 
Where "   ⃘ " is max-min composition operator. 𝑅(𝑡, 𝑡 − 1) is a fuzzy logical relationship between 𝐹(𝑡) and 𝐹(𝑡 − 1), 
and can be expressed by 𝑅(𝑡, 𝑡 − 1) =∪௜,௝ 𝑅௜,௝(𝑡, 𝑡 − 1) where ∪ is union operator. 

 
Definition 3 
Suppose 𝐹(𝑡) = 𝐴௜ is caused by 𝐹(𝑡 − 1) = 𝐴௝, then the fuzzy logical relationship is defined as 𝐴௜ → 𝐴௝  

If there are fuzzy logical relationship obtained from state 𝐴ଶ, then a transition is made to another state 𝐴௝ where 𝑗 =

1,2, … , 𝑛, as 𝐴ଶ → 𝐴ଷ,  𝐴ଶ → 𝐴ଶ, … , 𝐴ଶ → 𝐴ଵ; hence the fuzzy logical relationship are grouped into a fuzzy logical 
relationship group as: 

                                                                     𝐴ଶ → 𝐴ଵ, 𝐴ଶ, 𝐴ଷ                                                                                  (3) 

Fuzzy Time Series Markov Chain 

Fuzzy Time Series Markov Chain flowchart shown in Fig 2 and the method steps are as follows [7, 9]: 
Step 1: Define the universe of discourse 𝑈 
Determine minimum value 𝐷௠௜௡ and maximum value 𝐷௠௔௫ of historical data, then define the universe of discourse 
𝑈 as follows: 

                                                   𝑈 = [𝐷௠௜௡ − 𝐷ଵ, 𝐷௠௔௫ + 𝐷ଶ]                                                                   (4) 
 
where 𝐷ଵ and 𝐷ଶ are two positive numbers that determined by researcher 
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FIGURE 2. Flowchart of Fuzzy Time Series Markov Chain 

 
Step 2: Calculate the number of fuzzy intervals into several equal length interval 
i. Determining the number of class interval using Sturgess Rule in Equation (5): 
                                                                              𝐾 = 1 + (3,3 log 𝑁)                                                                    (5) 

where 
𝐾 : number of intervals 
𝑛 : amount of data 
 
ii. Determining the length of class interval by Equation (6): 

                                                                   𝑙 =
[(஽೘ೌೣା஽మ)ି(஽೘೔೙ି஽భ)]

௄
                                                             (6) 

where  
𝑙 : interval length 

 
Step 3: Defining the fuzzy set 𝐴௜ in the universe of discourse 𝑈. For every fuzzy set 𝐴௜ (𝑖 = 1,2, … , 𝑛) defined in the 
number of intervals which have been specified, where 𝐴ଵ, 𝐴ଶ, … , 𝐴௡ defined by 

𝐴ଵ = {1/𝑢ଵ + 0.5/𝑢ଶ + 0/𝑢ଷ+. . . +0/𝑢௡} 
𝐴ଶ = {0,5/𝑢ଵ + 1/𝑢ଶ + 0,5/𝑢ଷ+. . . +0/𝑢௡} 

⋮ 
                                                              𝐴௡ = {0/𝑢ଵ + ⋯ + 0,5/𝑢௡ିଵ + 1/𝑢௡}                                                        (7) 

 
Step 4: Fuzzification of historical data. Fuzzification is a change in the form of real value (crisp) into the form fuzzy 
by mapping the real value into fuzzy set that correspond. If a time series data sets are on intervals, 𝑢௜ then the data is 
fuzzified into fuzzy set 𝐴௜. 
 
Step 5: Determining the fuzzy logical relationship and fuzzy logical relationships group (FLRG). Based on Definition 
3, fuzzy logical relationship group can be easily obtained. 
 
Step 6: Defining Markov probability transition matrix. 
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FLRG is utilized to get the probability of the next state. Therefore, we get a Markov transition matrix with 
dimension 𝑛 × 𝑛. The transition probability formula can be written as: 

                                                                     𝑃௜௝ =
ெ೔ೕ

ெ೔
;   𝑖, 𝑗 = 1,2, … , 𝑛                                                    (8) 

where: 
𝑃௜௝   : Probability of transition from state 𝐴௜ to state 𝐴௝ by one step 
𝑀௜௝ : number of transitions from state 𝐴௜ to state 𝐴௝ by one step 
𝑀௜  : the quantity of data included in the 𝐴௜ state 
The probability matrix state 𝑃 can be written as follows: 

𝑷 = ൦

𝑷𝟏𝟏 𝑷𝟏𝟐 ⋯ 𝑷𝟏𝒏

𝑷𝟐𝟏 𝑷𝟐𝟐 ⋯ 𝑷𝟐𝒏

⋮ ⋮ ⋱ ⋮
𝑷𝒏𝟏 𝑷𝒏𝟐 ⋯ 𝑷𝒏𝒏

൪ 

where ∑ 𝑃௜௝ = 1௡
௝ୀଵ  

For the matrix 𝑃, several definitions as follows: 
1. If 𝑃௜௝ ≥ 0, then state 𝐴௝ is accessible from state 𝐴௜ 
2. If states 𝐴௜ and 𝐴௝ are accessible to each other, then 𝐴௜ communicates with 𝐴௝  
 
Step 7: Define defuzzification forecasting value 
To generate forecasting value from the obtained probability matrix then it can be calculated by the rule as following: 
1. If FLRG 𝐴௜ is empty, (𝐴௜ → ∅) then forecasting value is 𝑚௜ that the middle value of 𝑢௜ can be written by 

𝐹(𝑡) = 𝑚௜ 
2. If FLRG 𝐴௜ is one to one (assume 𝐴௜ → 𝐴௞ where 𝑃௜௝ = 0 and 𝑃௜௞ = 1, 𝑗 ≠ 𝑘) then the forecasting value is 𝑚௞ the 

middle value of 𝑢௞ 
                                                                  𝐹(𝑡) = 𝑚௞𝑃௜௞ = 𝑚௞                                                                                  (9) 
3. If FLRG 𝐴௜ is one to many (assume 𝐴௝ → 𝐴ଵ, 𝐴ଶ, … , 𝐴௡; 𝑗 = 1,2, … 𝑛). And if 𝑌(𝑡 − 1) at time (𝑡 − 1) which 

is on state, 𝐴௝ then the forecasting value is 

                  𝐹(𝑡) = 𝑚ଵ𝑃௝ଵ + 𝑚ଶ𝑃௝ଶ + ⋯ + 𝑚௝ିଵ𝑃௝(௝ିଵ) + 𝑌(𝑡 − 1)𝑃௝௝ + 𝑚௝ାଵ𝑃௝(௝ାଵ) + ⋯ + 𝑚௡𝑃௝(௡)                 (10) 
where: 
𝑚ଵ, 𝑚ଶ, … , 𝑚௡ : the midpoint of 𝑢ଵ, 𝑢ଶ, … , 𝑢௡ 
𝑌(𝑡 − 1)          : actual value from state 𝐴௝ at time 𝑡 − 1 

 
Step 8: Determine the adjustment value to forecasting result. Adjustment forecasting used to review forecasting error. 
The adjusting rules for forecasting value is explained as follows: 
1. If state 𝐴௜ communicates with 𝐴௜, starting in state 𝐴௜ at time 𝑡 − 1 as 𝐹(𝑡 − 1) = 𝐴௜ and occur an increasing 

transition into state 𝐴௝ at time 𝑡 , (𝑖 < 𝑗), then the adjusting value is determined as: 

                                                                                𝐷௧ଵ = ቀ
௟

ଶ
ቁ                                                                                 (11) 

where: 
𝑙 : interval length 
2. If state 𝐴௜ communicates with 𝐴௜, starting in state 𝐴௜ at time time 𝑡 − 1 as 𝐹(𝑡 − 1) = 𝐴௜ and occur a decreasing 

transition into state 𝐴௝ at time 𝑡 , (𝑖 > 𝑗), then the adjusting value is determined as: 

                                                                            𝐷௧ଵ = − ቀ
௟

ଶ
ቁ                                                                             (12) 

3. If the current state is in state 𝐴௜ at time 𝑡 − 1 as 𝐹(𝑡 − 1) = 𝐴௜ , and occur a jump-forward transition into state 𝐴௜ା௦ 
at time 𝑡, (1 ≤ 𝑠 ≤ 𝑛 − 𝑖), then the adjusting value is determined as: 

                                                                         𝐷௧ଶ = ቀ
௟

ଶ
ቁ 𝑠, (1 ≤ 𝑠 ≤ 𝑛 − 𝑖)                                                           (13) 

where 
𝑠 : the number of forward transitions 
 
4. If the current state is in state 𝐴௜ at time 𝑡 − 1 as 𝐹(𝑡 − 1) = 𝐴௜ and occur a jump-backward transition into state 

𝐴௜ି௩ at time 𝑡, (1 ≤ 𝑣 ≤ 𝑖), then the adjusting value is determined as: 
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                                                                         𝐷௧ଶ = − ቀ
௟

ଶ
ቁ 𝑣, (1 ≤ 𝑣 ≤ 𝑖)                                                              (14) 

where 
𝑣 : the number of backward transitions 

 
Step 9: Calculate the adjusted forecasting results. In general, for forecasting result 𝐹′(𝑡) can be obtained as: 

                                                          𝐹ᇱ(𝑡) = 𝐹(𝑡) ± 𝐷௧ଵ ± 𝐷௧ଶ =  𝐹(𝑡) ±  ቀ
௟

ଶ
ቁ ±  ቀ

௟

ଶ
ቁ 𝑣                                         (15) 

Stationary in Time Series Forecasting 

In a data, it is possible that the data is not stationary because the mean or variance is not constant, hence, to 
eliminate the non-stationarity to the mean, the data can be made close to stationary by using the method of differencing. 
The behavior of stationary data includes not having too large variations and tends to approach the mean value, and 
vice versa for non-stationary data [11]. 
1. Stationary in Variance 

The data that is not stationary in variance can be transformed. Therefore, the data becomes stationary in 
variance by doing a power transformation calculation. Box and Cox in 1964 introduced power transformation as 
follows [8]: 

𝑍௧
ᇱ =           

𝑍௧
ఒ − 1

𝜆
 , 𝜆 ≠ 0  

                                                                                  ln(𝑍௧),    𝜆 = 0                                                               (16) 
𝑍௧ : time series in period 𝑡 
𝜆   : transformation parameter 
 
 
 
2. Stationary in Mean 

The Augmented Dickey-Fuller (ADF) test is one of the tests that can be employed to evaluate the stationary of 
time series data in mean. It is to see whether the model obtained has or does not have a unit root. The data that is not 
stationary in the mean can be stationary through the process differencing. This test has a regression model as follows: 

                                                                  ∆𝑍௧ = 𝛿𝑍௧ିଵ + ∑ 𝛾௜∆𝑍௧ିଵାଵ + 𝑎௧
௡
௜ୀଶ                                                    (17) 

Hypothesis testing for ADF model is 
𝐻଴: 𝜌 = 0 (Have unit root) 
𝐻ଵ: 𝜌 ≠ 0 (No unit root) 

 
The null hypothesis is tested by t-statistics which is given by this formula: 

                                                                           |𝜏| =
ఋ෡

ௌா൫ఋ෡൯
                                                                      (18) 

where 
𝛿መ         : estimated value of parameter 𝛿 
𝑆𝐸൫𝛿መ൯ : standard error for estimated value 𝛿 
Reject 𝐻଴ if |𝜏| > ห𝜏ఈ;ௗ௙ห or p-value < 𝛼  [12]. 

Autoregressive Integrated Moving Average (ARIMA) 

Autoregressive Integrated Moving Average is a forecasting method that can predict time series data stationary 
in variance and mean. For the data that did not fulfil the stationary, the transformation and differentiation process can 
be conducted, then ARIMA method can be used if the data has met stationary. In addition, it takes a lot of object data 
to determine the best ARIMA model on the observed object. The ARIMA (𝑝, 𝑑, 𝑞) model is a univariate time series 
that merges the autoregressive (AR) and moving average (MA). The general form of ARIMA (𝑝, 𝑑, 𝑞) can be written 
as [13]: 

                                                               𝜙௣(𝐵)(1 − 𝐵)ௗ𝑦௧ = 𝜃௤(𝐵)𝜀௧                                                             (19) 
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with 
𝜙௣(𝐵) = (1 − 𝜙ଵ(𝐵ଵ) − 𝜙ଶ(𝐵ଶ) − ⋯ −𝜙௣(𝐵௣)) 
𝜃௤(𝐵) = (1 − 𝜃ଵ(𝐵ଵ) − 𝜃ଶ(𝐵ଶ) − ⋯ −𝜃௤(𝐵௤)) 

where 
 𝑦௧  : observation at time t 
𝜙௣ : AR coefficient on order p 
𝜃௤ : MA coefficient on order q 
𝜀௧ : error at time t 
𝑑 : degree of differentiation  
𝐵 : Backshift operator 

 
Forecasting steps for ARIMA method is as follows: 
Step 1: Model Identification  
The identification of ARIMA model is based on the pattern shown in the auto correlation (ACF) and the partial 
correlation (PACF) plot of the data already stationery. Theoretical behavior of ACF and PACF plot is shown on Table 
1: 

TABLE 1. Theoretical behavior of AR(p), MA(q),  
and ARMA(p, q) models on ACF and PACF plots 

Model ACF PACF 
AR (p) Tails off Cuts off after lag p 
MA (q) Cuts off after lag q Tails off 

ARMA (p, q) Tails off and or cuts off Tails off and or cuts off 
 
Step 2: Parameter Estimation 
There are several methods for parameter estimation such as Moment Method, Maximum Likelihood and Least Square 
which can be used to estimate the parameters in models [13]. 
 
Step 3: Parameter Significance Test 
The parameter significance test steps are as follows: 
a. The model for parameter significance test: 

                                                            𝜙௣(𝐵)(1 − 𝐵)ௗ𝑦௧ = 𝜃௤(𝐵)𝜀௧                                                            (20) 
with 

𝜙௣(𝐵) = (1 − 𝜙ଵ(𝐵ଵ) − 𝜙ଶ(𝐵ଶ) − ⋯ −𝜙௣(𝐵௣)) 
𝜃௤(𝐵) = (1 − 𝜃ଵ(𝐵ଵ) − 𝜃ଶ(𝐵ଶ) − ⋯ −𝜃௤(𝐵௤)) 

 
b. Hypothesis testing for AR model 

𝐻଴: 𝜙௣ = 0 (Not significant parameter) 
𝐻ଵ: 𝜙௣ ≠ 0 (Significant parameter) 
 
Statistical test calculation for AR model is: 

                                                      𝑡௖௔௟௖ =
(థ෡ ೗ି଴)

ௌா൫థ෡ ೗൯
                                                                      (21) 

Reject 𝐻଴ if |𝑡௖௔௟௖| > 𝑡ഀ

మ
(௡ିଵ)

  

 
Hypothesis testing for MA model 
𝐻଴: 𝜃௤ = 0 (Not significant parameter) 
𝐻ଵ: 𝜃௤ ≠ 0 (Significant parameter) 

 
Statistical test calculation for MA model is: 

                                                                       𝑡௖௔௟௖ =
ఏ෡೗ି଴

ௌா൫ఏ෡೗൯
                                                                (22) 

Reject 𝐻଴ if |𝑡௖௔௟௖| > 𝑡ഀ

మ
(௡ିଵ)
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If there is one parameter that is not significant then return to Step 1 
 

Step 4: Diagnostic Checking 
Diagnostic checking models are carried out to ensure if the remaining models meet the white noise. The following is 
steps of diagnostic checking [14]: 
a. Hypothesis testing Ljung Box 

𝐻଴ : there is no residual autocorrelation 
𝐻ଵ : there is residual autocorrelation 

b. Determine Ljung Box test statistics: 

                                                                     𝑄 = 𝑛(𝑛 + 2) ቀ
௥̂భ

మ

௡ିଵ
+

௥̂మ
మ

௡ିଶ
+ ⋯ +

௥̂ೖ
మ

௡ି௄
ቁ                                           (23) 

Where: 
𝑄 : Ljung-Box Statistics Test 
𝑛  : number of observation data 
𝐾  : number of lag observed 
𝑟̂௜

ଶ : estimated correlation of residuals on the i-th of the lag with 𝑖 = 1,2, … , 𝐾 
 
Reject 𝐻଴ if 𝑄 > 𝜒(௄ି௣ି௤)

ଶ  
If there is autocorrelation between the residuals, then return to Step 1  
 

Step 5: Overfitting 
Overfitting is applied to get the best model with addition or subtraction of the order of AR (p) and MA (q) parameters 
from the tentative model has been obtained. The best model is the model with significant parameter and residual series 
that does not have autocorrelation. 
 
 
Step 6: Selection of ARIMA Model 
The selection of the best ARIMA model is minimize the information criteria such as Akaike Information Criterion 
(AIC) value. 

                                                                 𝐴𝐼𝐶 = 𝑛 ln 𝜎ොఌ
ଶ + 2(𝑝 + 𝑞 + 1)                                                          (24) 

                                                                                 𝜎ොఌ
ଶ = 𝑆𝑆𝐸/𝑛                                                                        (25) 

  
However, it is known that for the autoregressive model, the AIC criterion does not gives a consistent order of 𝑝, 
hence for comparison using other information criteria such as Schwarzt Bayesian Information Criterion (SBC) 

                                                               𝑆𝐵𝐶 = 𝑛 ln 𝜎ොఌ
ଶ + (𝑝 + 𝑞 + 1) ln 𝑛                                                        (26) 

   

Model Selection Criteria 

The selection of the best model is by comparing the error values forecasting of the method used. A method is 
better compared to other methods if the forecast error value is produced smaller.  

If 𝑍ଵ, 𝑍ଶ, … , 𝑍௡ state the whole data, and in sample data can be stated as  
𝑍ଵ, 𝑍ଶ, … , 𝑍௠, 𝑚 < 𝑛. If the adjusted value is 𝑍መଵ, 𝑍መଶ, … , 𝑍መ௠, 𝑚 < 𝑛, the value of MSE, RMSE and MAD for in sample 
data defined as [15]. 

                                                𝑀𝑆𝐸 = ∑
௓೔ି௓෠೔

௡
௠
௧ୀଵ ,   𝑚 < 𝑛                                                              (27) 

 

                                                           𝑅𝑀𝑆𝐸 = ට∑
௓೔ି௓෠೔

௡
௠
௧ୀଵ , 𝑚 < 𝑛                                                            (28) 

 

                                                       𝑀𝐴𝐷 = ∑
|௓೔ି௓෠೔|

௡
,   𝑚 < 𝑛௠

௧ୀଵ                                                              (29) 
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Furthermore, the accuracy models can be also measured by Mean Absolute Percentage Error (MAPE) with the 
following formula [13] 

                                                          𝑀𝐴𝑃𝐸 =
ଵ

௡
∑ ቚ

஺೟ିி೟

஺೟
ቚ௡

௧ୀଵ                                                               (30) 

where: 
𝐴௧ : Actual data value at period 𝑡 
𝐹௧ : Forecast data value at period 𝑡 
𝑛  : the number of data 

TABLE 2. MAPE Value Interpretation 
MAPE Judgment of Forecast Accuracy 
< 10% Highly Accurate 

10%≤ MAPE< 20% Good Forecast 
20%≤ MAPE< 50% Reasonable Forecast 

≥ 50% Inaccurate Forecast 
 

The smaller the MAPE value, the better the model. Table 2 shows a scale to assess the accuracy of a model 
based on MAPE value was developed by Lewis (1982) [16]. Root Mean Square Error (RMSE) is the magnitude of 
the prediction error rate, where the smaller (closer to 0) the RMSE value, the more accurate the prediction results will 
be. In this study, the model selection criteria used are Mean Absolute Percentage Error (MAPE) and Root Mean 
Squared Error (RMSE). 

RESULTS 

Data Description 

Table 3 shows that the average price of crude oil is US$58.68 per barrel with spread data of US$21.92 per 
barrel from the average. The lowest price was US$ -37.63 per barrel, while the highest price was US$123.7 per barrel. 
Skewness shows a positive value of 0.077 or the values are concentrated on the right side (located to the right of 𝑀ை). 
Thereby, the curve has a tail that extends to the right or the curve skews to the right. Then, with a kurtosis value of 
less than 3 which is 0.159 then it can be said to be a Platykurtic curve. And Fig 3 shows a time series of crude oil 
prices for the period March 3, 2020 – March 31, 2022. 

 
TABLE 3. Descriptive Statistics 

N 547 
Mean Value 58.68 

Standard Deviation 21.92 
Minimum Value -37.63 
Maximum Value 123.70 

Skewness 0.077 
Kurtosis 0.159 

 

 
FIGURE 3. Time Series Plot 
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Fuzzy Time Series Markov Chain Forecasting Analysis 

Step 1: Define the universe of discourse 𝑈 
Based on historical data obtained the minimum value 𝐷௠௜௡ = −37.63 and maximum value 𝐷௠௔௫ = 123.70 with 
𝐷ଵ = 0,37 and 𝐷ଶ = 0,3 which has been determined by the researcher hence 𝑈 = [−38 , 124]  
 
Step 2: Specifying Class Interval 
a. Determine the number of class intervals 

The calculation of the number of class intervals is determined by using Sturgess Rule and obtained 
𝐾 = 1 + (3,3 log 𝑁)  
𝐾 = 1 + (3,3 log 547)  
𝐾 = 10,035 ≈ 10  
 

b. Determine the length of the class interval 

𝑙 =
[(஽೘ೌೣା஽మ)ି(஽೘೔೙ି஽భ)]

௄
  

𝑙 =
[(ଵଶଷ.଻ା଴,ଷ)ି(ିଷ଻.଺ଷି଴,ଷ଻)]

ଵ଴
  

  𝑙 = 16.2 ≈ 16  
 
Furthermore, divide the universe of discourse 𝑈 into several partitions according to the number of class intervals, 
which is 10 and the length of the class interval is 16. Hence the interval and the middle interval can be seen in Table 
5. 

 
TABLE 4. Class Interval and Middle Value Interval 

Interval Middle Value Interval 
𝑢ଵ = [−38 , −21.8] −29.9 
𝑢ଶ = [−21.8 , −5.6] −13.7 
𝑢ଷ = [−5.6, 10.6] 2.5 
𝑢ସ = [10.6 , 26.8] 18.7 
𝑢ହ = [26.8, 43] 34.9 
𝑢଺ = [43, 59.2] 51,1 
𝑢଻ = [59.2 , 75.4] 67.3 
𝑢଼ = [75.4 , 91.6] 83.5 
𝑢ଽ = [91.6, 107.8] 99.7 
𝑢ଵ଴ = [107.8 , 124] 115.9 

     
Step 3: Fuzzification of actual data 

Based on the fuzzy set that has been formed, where the oil price data is converted into the form of linguistic 
values. The results of fuzzification are notated into linguistic numbers can be seen in Table 5. 
 

TABLE 5. Crude Oil Price Data Fuzzification 
Date Actual Data (𝒀𝒕) Interval Fuzzification 

03/03/2020 47.18 𝑢଺ = [43, 59.2] 𝐴଺ 
04/03/2020 46.78 𝑢଺ = [43, 59.2] 𝐴଺ 
05/03/2020 45.90 𝑢଺ = [43, 59.2] 𝐴଺ 
06/03/2020 41.28 𝑢ହ = [26.8, 43] 𝐴ହ 
07/03/2020 31.13 𝑢ହ = [26.8, 43] 𝐴ହ 

⋮ ⋮ ⋮ ⋮ 
30/03/2022 107.82 𝑢ଵ଴ = [107.8 , 124] 𝐴ଵ଴ 
31/03/2022 100.28 𝑢ଽ = [91.6, 107.8] 𝐴ଽ 
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Step 4: Determining the Fuzzy Logical Relationship and Fuzzy Logical Relationships Group (FLRG). 
In Table 6 is shown Fuzzy Logical Relationship (FLR) which is the relationship between each data to the next data in 
the form of a fuzzy set based on the determination of fuzzification. After obtaining the FLR, then the FLRG is 
determined which is the grouping of each state transfer namely the current state and the next state. 
 

TABLE 6. Fuzzy Logical Relationship (FLR) 
Data Order FLR 

1 – 2 𝐴଺ → 𝐴଺ 
2 – 3 𝐴଺ → 𝐴଺ 
3 – 4  𝐴଺ → 𝐴ହ 
4 – 5  𝐴ହ → 𝐴ହ 
5 – 6  𝐴ହ → 𝐴ହ 

⋮ ⋮ 
545 – 546  𝐴ଵ଴ → 𝐴ଽ 
546 – 547  𝐴ଽ → 𝐴ଽ 

 
Step 5: Defining Markov probability transition matrix. 
The transition probability matrix in this study is 10 × 10 because, in Step 1, the number of class intervals is 10. The 
following is the transition probability matrix: 

𝑃 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0.857 0.142 0 0 0 0 0 0 0 0
0.040 0.800 0.160 0 0 0 0 0 0 0

0 0.267 0.600 0.133 0 0 0 0 0 0
0 0 0.016 0.812 0.172 0 0 0 0 0
0 0 0.011 0.105 0.863 0.021 0 0 0 0
0 0 0 0 0.029 0.941 0.029 0 0 0
0 0 0 0 0 0 0.867 0.133 0 0
0 0 0 0 0 0 0.059 0.871 0.071 0
0 0 0 0 0 0 0 0.067 0.892 0.041
0 0 0 0 0 0 0 0 0.086 0.914⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Step 6: Define defuzzification and determine the adjustment value to forecasting result. After the transition probability 
matrix is formed, the next step is the calculation process for forecasting and defuzzification of the previously obtained 
FLRG. Before determining the forecasting results, the Markov chain fuzzy time series method has a step to adjust the 
forecasting results for each relationship between the current state and the next state.  
 
Step 7: Determine the adjusted forecasting 
After the adjustment value is obtained, then the forecasting results are determined which have been adjusted can be 
seen in Table 7.  
 

TABLE 7. Adjusted Forecasting Results 
Date Actual 

Data (𝒀𝒕) 
Initial 

Forecasting 
(𝑭𝒕) 

Adjustment 
Value 

Final 
Forecasting 

(𝑭′𝒕) 
03/03/2020 47.18 - - - 
04/03/2020 46.78 45.921 0 45.921 
05/03/2020 45.90 45.575 0 45.575 
06/03/2020 41.28 46.244 -2 44.816 
07/03/2020 31.13 36.338 -4 32.828 
08/03/2020 34.36 32.233 1 33.177 

⋮ ⋮ ⋮ ⋮ ⋮ 
30/03/2022 107.82 105.598 0 105.598 
31/03/2022 100.28 100.043 0 100.043 

 

080006-11

 24 D
ecem

ber 2023 10:15:30



 

 
FIGURE 4. Plot Using FTS Markov Chain 

 
The Fuzzy Time Series Markov Chain method has a very good performance in forecasting crude oil prices 

during the Covid-19 pandemic. This is indicated by the resulting MAPE value of 2.76% (less than 10%) and RMSE 
580.3 on daily data for March 2020 - March 2022. This is supported by the similarity plot between the forecast data 
and the actual data as presented in Fig 4. And the results of forecasting crude oil prices for the next 5 consecutive days 
period (April 1st -7th, 2022) are US$99.83, US$105.12, US$101.89, US$98.31, US$96.93 (per barrel).  

ARIMA Forecasting Analysis 

In time series analysis, stationarity is required to minimize model errors in order to get the best model. The 
first step to determine the stationarity of the data is to make a time series plot. From Fig 3 it is obtained that the data 
is not stationary due to the fluctuating data where the data is not around a constant mean or on average does not form 
an almost horizontal trend. 

In addition, the stationarity of the data can be determined by the unit root test using the Augmented Dickey 
Fuller (ADF) test. The unit root test hypothesis is: 

𝐻଴: 𝜌 = 0 (There is a unit root) 
𝐻ଵ: 𝜌 ≠ 0 (No unit root) 
 
 
 
 
 

 
 

FIGURE 5. Unit Root Test Result with ADF Test 
 

From Fig 5 above obtained p-value, 0.1487 is greater than 𝛼 = 0,05  then accept 𝐻଴ so that it can be said that 
there is a unit root which means the data is not stationary. Therefore, a differencing process is needed which was 
previously carried out by the natural logarithm transformation process on 547 crude oil price data during the Covid-
19 pandemic hence the data becomes stationary with respect to the mean and variance. 

Furthermore, the natural logarithm transformation process and differencing process are carried out. And from 
Fig 6 it is obtained that the data is stationary at the first difference level, thus indicating the value of 𝑑 = 1. To 
strengthen the existence of stationary data, Fig 7 shows the results of the ADF test with the data from the logarithmic 
differencing process. The p-value obtained from the unit root test results is 0.01 < 0.05 (𝛼) so that 𝐻଴ is rejected, 
which means that there is no unit root so that the data is stationary. 
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Augmented Dickey-Fuller Test 
 
data: price 
Dickey-Fuller = -3.0149, Lag order = 7, p-value = 0.1487 
alternative hypothesis: stationary 
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FIGURE 6. The Result of Differencing-Natural Logarithm Plot 

 
 
 
 
 
 

FIGURE 7. The Result of Differencing-Natural Logarithm by Using ADF Test 
 

This is also in line with the ACF plot and PACF plot where there are no more than 3 lags that come out of the 
confidence interval shown in Fig 8(a) & 8(b). Because of the time series data has met the stationary requirements. 
Therefore, forecasting can be done and there is no need to do further differencing (second order differencing). 

  
(a)                                                                         (b) 

FIGURE 8. (a) ACF Plot & (b) PACF Plot After Natural Logarithm Differencing Process 
 

After pre-processing the data, the next step is to identify and estimate the best ARIMA model from the results 
of the transformation and differencing processes. Based on the analysis of the order correlogram on the Auto 
Regressive (p) PACF plot in Fig 8 (b), the significant order is lag 18 and from Fig 8 (b) the ACF plot also shows that 
the significant order in the Moving Average (q) is lag 18. Significant order is obtained by considering the outgoing 
correlogram. of confidence intervals. So, the models estimated on crude oil price data during the Covid-19 pandemic 
are ARIMA (1,1,0), ARIMA (0,1,1), and ARIMA (1,1,1). 

Furthermore, the parameters selected into the model are if the p-value or significance value for each parameter 
is less than 𝛼 (0,05). The hypothesis used is as follows: 

𝐻଴: Parameters are not significant in the model 
𝐻ଵ: Significant parameters in the model 
 

The results of the significance test on the three ARIMA models estimated in Table 8 show that only ARIMA 
(0,1,1) has significant parameters where p-value MA (1) is 0.023 less than 𝛼 (0.05) then reject 𝐻଴ which means only 
ARIMA model (0,1,1) has significant parameters in the model. Furthermore, the selection of the best model is also 
carried out by analyzing the Akaike information criterion (AIC), Schwarz information criterion (SIC) and Hannan-

Augmented Dickey-Fuller Test 
 
data: Differencing_Data$Diff1 
Dickey-Fuller = -7.6654, Lag order = 7, p-value = 0.01 
alternative hypothesis: stationary 
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Quinn criterion (HQC). Table 8 shows that the AIC, SIC and HQC values in ARIMA (0,1,1) have the lowest values 
compared to other ARIMA models. In addition, the MSE value on ARIMA (0,1,1) is also the lowest, so it can be said 
that ARIMA (0,1,1) is the best model to use on crude oil price data during the Covid-19 pandemic. 

 
TABLE 8. ARIMA Model Estimation 

Model/ 
Parameter 

Variable p-value MSE AIC SIC HQC 

ARIMA (1,1,0) 
Constant 

AR (1) 0.058 
0.459 

2.83 3.750 3.776 3.760 

ARIMA (0,1,1) 
Constant 

MA (1) 0.023 
0.400 

2.47 3.689 
 

3.694 3.690 

ARIMA (1,1,1) 
 
Constant 

AR (1) 
MA (1) 
 

0.246 
0.812 
0.427 

2.78 3.723 3.741 3.753 

 
TABLE 9. Diagnostic Checking 

Lag p-value Decision 
12 0.392 white noise 
24 0.299 white noise 
36 0.618 white noise 
48 0.656 white noise 

 
To obtain the best ARIMA model, diagnostic checking includes white noise and normal distribution of 

residuals. The white noise test with the null hypothesis is that there is no residual correlation between lags. Table 9 
shows the p-value by Ljung Box Statistics for ARIMA (0,1,1). From Table 9 the value of all p-values at lags to 12, 
24, 36 and 46 is more than 𝛼 (0.05) so accept 𝐻଴ that the residuals do not contain autocorrelations or white noise. This 
is reinforced through the residual ACF and PACF correlograms, in Fig 9 it is shown that probability > 𝛼  (0.05) which 
resulting the white noise model.  

 
FIGURE 9. The Output of ACF and PACF Plot for Residual Autocorrelation Test 

 
Normality testing was carried out using the Kolmogorov-Smirnov test with the null hypothesis is the residuals 

are normally distributed. The residual is normally distributed if the p-value is more than 𝛼 with 𝛼 value is 0.05. 
The results of the normality test using the Kolmogorov-Smirnov test showed that the p-value in ARIMA (0,1,1) 

residual probability plot has a value of more than 0.120. Hence, it can be said that the residuals in the model are 
normally distributed. Due to the model satisfies the white noise test and has a normal distribution of error, the ARIMA 
model (0,1,1) is the best model so that it can proceed to the next stage, which is forecasting. 

The best model used is ARIMA (0,1,1) with constants written in the form of an equation, the following model 
is obtained: 

                                                        (1 − 𝐵)𝑌෠௧ = 0.0587 + 0.0293𝜀௧ିଵ                                                          (31) 
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where 𝑌෠௧ = ln 𝑍መ௧ , then the forecast value for 𝑍௧ is  
                                                                          𝑍መ௧ = exp൫𝑌෠௧൯                                                                            (32) 
where 𝑍መ௧ : crude oil price prediction 

 
MAPE & RMSE resulting from the ARIMA method are 3.85% and 856.7 which shows that ARIMA 

performance is highly accurate. Fig 10 shows a plot between the predicted and actual values using the ARIMA method. 
Table 10 shows the prediction results by using the ARIMA Model (0,1,1) for the next 5 consecutive days period (April 
1st -7th, 2022):  

 
FIGURE 10. Plot Using ARIMA Method 

 
TABLE 10. Crude Oil Prices (Confidence Interval 95%) 

Date 
Crude Oil Prices (US$ per barrel) 

Prediction The Lowest Prediction The Highest Prediction 
04/01/2022 100.831 94.285 108.364 
04/04/2022 102.976 96.199 109.752 
04/05/2022 100.598 93.287 108.451 
04/06/2022 95.711 91.143 105.639 
04/07/2022 95.832 92.547 107.433 

Comparison Forecasting Methods 

Comparison of forecasting accuracy can be done visually and analytically. A comparison of forecasting 
accuracy visually is done by comparing the estimated value and the actual value using a time series plot. While the 
comparison of the accuracy of forecasting time series data analytically is done by comparing the forecasting error 
values between methods. The comparison of the forecasting results of the ARIMA and Fuzzy Time Series (FTS) 
Markov Chain methods visually on the crude oil price data is done by comparing the plots of the actual value and the 
forecast value of crude oil prices as presented in Fig 11. Based on Fig 11, the forecast value plot of the FTS Markov 
Chain method is more similar or closer to the actual value pattern when compared to the ARIMA method, which 
means that forecasting using the FTS Markov Chain method is better than the ARIMA method on the data as many as 
547 observations. 
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FIGURE 11. Actual Data & Forecasted Data Plots Using FTS Markov Chain & ARIMA Methods 
 

Analytically, the comparison of forecasting accuracy in this study is conducted by using MAPE and RMSE 
values as a measure of forecasting error. The MAPE value obtained by the FTS Markov Chain method is 2.76% and 
the RMSE is 580.3. While the MAPE value generated by the ARIMA method is 3.85% and RMSE is 856.7. Due to 
the MAPE and RMSE values in the FTS Markov Chain method are smaller than the ARIMA method, it shows that 
the FTS Markov Chain method works better than the ARIMA method to forecast crude oil price data during the Covid-
19 pandemic for the 2020-2022 period. The results visually and analytically yield the same conclusion that the FTS 
Markov Chain method has better performance than the ARIMA method. The results of forecasting time series data on 
crude oil prices during the Covid-19 pandemic using the FTS Markov chain method and the ARIMA method alongside 
the MAPE and RMSE values can be seen in Table 11. 

 
TABLE 11. Comparison of Actual Data with Predicted Data for Crude Oil Prices 

Date 
Crude Oil Prices (US$ per barrel) 

Actual Data (𝑌௧) FTS Markov Chain ARIMA 
03/03/2020 47,18 - - 
04/03/2020 46,78 45.921 47.238 
05/03/2020 45,90 45.575 46.852 
06/03/2020 41,28 44.816 45.986 
07/03/2020 31,13 32.828 41.477 
08/03/2020 34,36 33.177 31.492 

⋮ ⋮ ⋮ ⋮ 
30/03/2022 107.82 105.598 104.182 
31/03/2022 100.28 100.043 107.364 

 MAPE 2.76% 3.85% 
 RMSE 580.3 856.7 

CONCLUSION 

This study aims to predict crude oil prices during the Covid-19 pandemic and compare the performance of 
crude oil price forecasting by using the Fuzzy Time Series (FTS) Markov Chain method and Autoregressive Integrated 
Moving Average (ARIMA) method. The data used is daily data on the crude oil prices with West Texas Intermediate 
(WTI) Standard in US$/barrel for the period March 3, 2020 – March 31, 2022. The Fuzzy Time Series Markov Chain 
method has an excellent performance in forecasting crude oil prices during the Covid-19 pandemic. This is indicated 
by the resulting MAPE value of 2.76% (less than 10%) and RMSE 580.3 on daily data for March 2020 - March 2022. 
ARIMA model (0,1,1) with constants is the best ARIMA model for modeling actual data on crude oil prices for the 
period of March 2020 - March 2022 during the Covid-19 pandemic so that this model can be used for prediction of 
future world crude oil prices Covid-19 pandemic. MAPE of this model is 3.85% and RMSE is 856.7. Based on a 
visual and analytical comparison, it can be concluded that the Fuzzy Time Series Markov Chain method works better 
than the ARIMA method in forecasting crude oil prices during the Covid-19 pandemic on period March 2020 - March 
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2022. These results have several important implications for Indonesia, especially on policy recommendations and 
economic development due to changes in oil prices that have an impact on several sectors. 
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