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Abstract. Downregulation of circulating EPCs survival affects the ability to maintain and repair the endothelium as a key 
feature in vascular homeostasis.The current study intends to describe the intracellular protein profile after chronic 
asymmetric dimethylarginine (ADMA) exposure using the immunofluorescence technique. Human EPCs as targeted cells 
were purified from peripheral blood mononuclear cells using Ficoll-based gradient centrifugation, cells were seeded on a 
culture plate and maintained in an endothelial growth medium (EGM) until 7 days. ADMA exposure was performed on the 
seventh day and incubate for 24 hours. The intensity of phosphorylated SIRT1 (pSIRT1) and p16INK4a as targeted protein 
in ADMA treated cells were identified using a confocal laser scanning microscope. After 24 hours of ADMA exposure, 
intracellular protein expression in human EPCs was changed. Expression of p16INK4a as cells cycle inhibitor protein was 
significantly higher in ADMA treated cells compared with control cells (p=0.000). Otherwise, the expression of pSIRT1 
as a survival cells marker tends to decrease in ADMA treated cells compared with control (p=0.000). Our findings prove 
that elevated ADMA levels downregulating human EPCs viability.  
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INTRODUCTION 

Human endothelial progenitor cells (EPCs) are single-nucleated cells that can be purified from peripheral blood 
mononuclear cells (PBMNCs) [1]. In the basal conditions, human EPCs identified as rare cells in circulation, but they 
have an important role to improve endothelium health through the paracrine effect [2, 3]. EPCs dysfunction reflects 
the occurrence of disproportion number and EPCs function in the circulation system [4].  

Elevation of serum ADMA has been reported as the risk factor for cardiovascular disease by accelerating 
endothelial dysfunction, which also induced EPCs dysfunction [5]. The mechanism of EPCs dysfunction due to 
ADMA remains unclear, but a previous study report that apoptosis EPCs by ADMA occurred after endoplasmic 
reticulum stress sensor protein activation [6]. Endogenous ROS formation by ADMA modulated various intracellular 
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processes as well as senescence-associated proliferation arrest [5]. As cells cycle regulator, p16INK4a prevents G1 to 
S phase progression through inhibition of CDK4/6 kinases [5, 7]. The clearance of p16INK4a expressing cells 
attenuates age-associated phenotype and improves healthy cells lifespan [8].  

Correspondingly, it was shown that transcriptional regulation p16INK4a is instead dependent on the proper 
function of SIRT1.  A growing body of evidence suggests that SIRT1 has a beneficial effect to prevent endothelial 
cells become senescence [9]. But it is unclear whether SIRT1 activity has the same effect in human EPCs. Therefore, 
in the current study, we intend to describe: first, whether chronic ADMA exposure leads to cell cycle arrest by 
intracellular p16INK4a enhancement, second, whether the elevation of p16 after ADMA occurs after match pSIRT1 
reduction. 

EXPERIMENTAL DETAIL 

Cell Isolation and Culture 

5 mL heparinized peripheral blood was acquired from a healthy subject after informed consent in conformity with 
the local ethics committee. EPCs were isolated from PBMNCs using LymphopermTM density gradient solution 
(density 1.077; Axis-shield, France) according to the manufacturer's protocol. The procedures for the purification of 
EPCs from human PBMNCs have been describing elsewhere.10 PBMNC were seeded on the culture dishes with human 
fibronectin-coated (Clonetech, Switzerland) and maintained in EGMTM-MV2 medium BulletKitTM (Cat: CC-3202, 
Lonza, Swiss) supplemented with 15% fetal bovine serum (FBS), 1% L-glutamine, and 1% Penicillin/streptomycin 
(Gibco) in a 5% CO2 chamber at 37 0C until seven days to get a spindle shape morphology [1, 11, 12]. 

ADMA Treatment 

At seventh days, confluent EPCs were seeded in EGMTM-MV2 BulletKitTM with 500 μM NG, NG'-
dimethylarginine (Santa Cruz) containing 15% FBS, 1% L-glutamine and 1% PS for 24 h (5% CO2 at 37 0C). Control 
cells were incubated only with a fresh medium.    

Staining For Senescence-Associated p16INK4a 

After detachment with trypsin EDTA, EPCs were fixed and stained with mouse monoclonal (2D9A12) antihuman 
p16INK4a (Abcam, Cambridge, CA, United State) as primary antibody. Goat anti-mouse IgG (H-L) secondary antibody, 
Rhodamine conjugate was performed (#31660, Invitrogen). The p16INK4a in treated cells and control were performed 
using robotically analysis by Olympus Confocal Laser Scanning Microscope, type FV1000, and Olympus Fluoview 
ver 4.2a. 

Staining For Phosphorylated Sirt1  

Cells sample preparation done as well as p16INK4astaining procedure. EPCs stained with anti-human SIRT-1 
(pT530) (JJ206-6) as primary antibodies were applied overnight at 4 0C. After washed, the fixated cells were stained 
with Goat anti-rabbit IgG H&L (Alexa Fluor 488) (Ab150077, Abcam) according to the manufacturer’s instruction.  

Data Analysis 

All trials were executed in triplicates. Data are provided as mean ± standard deviation (SD). Mann-Whitney tests 
were performed to compare means in each group. The statistical interpretation was decided at p<0.01. STATA (Stata 
Corporation, College Station, TX, version 14 for MacBook Air) was used for statistical analysis. 
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FIGURE 1. The intensity of intracellular protein profile on human EPCs: (a) intracellular p16INK4a profile in control cells; (b) 
Intracellular p16INK4a profile in ADMA treated cells; (c) Intracellular pSIRT1 profile in control cells; (d) Intracellular pSIRT1 in 
DMA treated cells. Scale bar represent 30 m. The experiment was performed in triplicate and similar outcome were obtained 

each time. 

RESULT AND DISCUSSION 

Intracellular p16INK4a profile after chronic ADMA exposure  

We first examine whether p16INK4a tends to increase in human EPCs after chronic ADMA exposure. To characterize 
the p16INK4a profile, an immunofluorescence technique was performed. The fluorescence intensity of p16INK4a in treated 
cells and control are presented in Fig. 1. Furthermore, chronic ADMA exposure to human EPCs leads to the elevation 
of p16INK4a significantly compared to control cells (p=0.000) as presented in Table 1. It means that the cell cycle arrest 
was activated as a stress response by increasing the CDK inhibitor p16INK4a after chronic ADMA exposure. Our finding 
possibly explained that upregulation of p16INK4a is a cell compensation if proper cell division cannot occur due to the 
presence of DNA damage [9,13,14].  Cell cycle controlling proteins, such as p16INK4a and p21 have an important 
assignment to encourage senescence features in response to DNA damage, on the other hand, SIRT1 can positively 
regulate DNA repair.15 

 

TABLE 1. Quantification of intracellular protein profile in Human EPCs after  
chronic ADMA exposure 

Intracellular protein profile Control  ADMA treated cells P.value 
P16INK4a 74.5 ± 11.9 505.1 ± 80.2 0.000 
pSIRT1 586.41 ± 8.7 224.22 ± 28.5 0.000 

 

A novel targeted approach to prevent EPCs dysfunction is needed. Our findings show that ADMA leads to 
senescence-associated upregulation of p16INK4a as diverse stress. Therefore, Inhibition of p16INK4a may have a 
promising impact to reduce the negative impact of ADMA exposure on human EPCs. Basically, p16INK4a is also 
capable of triggering tumor suppressor pathways which inhibit cells proliferation trough the direct inhibition of cells 
cycle progression [16,17]. Previous research identified that histone deacetylases 3 and 4 inhibit the activity of the 
p16INK4a promoter trough Yin Yang 1 and zinc-binding protein-39 as downstream transcription factor of SIRT1 [18]. 

To further elucidate whether elevation p16INK4a profile after ADMA exposure is related to the downregulation of 
pSIRT1, we investigate the fluorescence intensity of intracellular pSIRT1. 
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Intracellular pSIRT1 Profile After Chronic ADMA Exposure  

The regulation of mitochondrial homeostasis by SIRT1 is a key factor to prevent telomere erosion that irreversible 
stops cell cycle progression [19-21]. Recent development elucidated that the downregulation of SIRT1 correlated with 
an increase in the oxidative stress-related cellular event, inflammation, and telomere damage induces replicative 
senescnece by enhancement of acetylated p53 [22]. Based on Table 1, our results suggest that pSIRT1 tends to 
decrease significantly after chronic ADMA exposure, this finding indicates the significance elevation of p16INK4a in 
response to ADMA exposure related with the presence of telomere attrition. Because it also has been reported that 
p16INK4a contribute to the p53-independent in response to telomere dysfunction [23].  

The reduction of pSIRT1 in this study exhibit that SIRT1 repressed by tumor protein p53, the most important tumor 
suppressor as well as describe before [24, 25]. When ADMA accumulation occurs, expression p53 tend to elevate as 
a result of protein arginine methyltransferase 1 (PRMT1) silencing which has implicated in DNA damage response 
[26].  Stable low level of PRMT1 showed reduced growth rate and cause cell cycle arrest [27].  

CONCLUSION 

This study suggests that the intracellular pSIRT1 tends to decline if human EPCs were exposed to ADMA 
continuously. Subsequently, upregulation of p16INK4a after ADMA exposure may reflected DNA damage present 
which leads to cell cycle arrest to avoid cell division with damaged DNA. Therefore, Inhibition of p16INK4a may 
have a promising impact to reduce the negative effect of ADMA in human EPCs. This finding suggests that reversal 
of EPCs dysfunction could therefore potentially prevent the cardiovascular disease progression by downregulating 
p16INK4a as targeted protein. 
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