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Preface 

We are delighted to present the proceedings of the fourth edition of the 6th Interna-
tional Manufacturing Engineering Conference and the 7th Asia-Pacific Conference 
on Manufacturing System (iMEC-APCOMS 2024), hosted by Universiti Malaysia 
Pahang Al-Sultan Abdullah through its Faculty of Manufacturing and Mecha-
tronic Engineering Technology. Held on September 11 and 12, 2024, the confer-
ence embraced the theme of “Sustainable Development Goals through Innovative 
Manufacturing Engineering.” 

iMEC-APCOMS 2024 has attracted a remarkable 99 submissions, all of which 
underwent a rigorous single-blind review process. Based on the recommendations 
of our dedicated reviewers, 44 papers were selected for publication in Volume 1 of 
the conference proceedings. We are immensely grateful to all contributing authors 
whose research has added great value to this collection. Each paper in this volume 
was thoughtfully evaluated by our esteemed technical review committee, comprised 
of leading experts in manufacturing engineering. 

The conference served as a vibrant forum for the exchange of pioneering ideas and 
insights, highlighted by keynote presentations from distinguished speakers, including 
Prof. Ir. Dr. Nik Mohd Zuki Nik Mohamed (Universiti Malaysia Pahang Al-Sultan 
Abdullah, Malaysia), Prof. Dr. Cucuk Nur Rosyidi (Universitas Sebelas Maret, 
Indonesia), and Prof. Dr. Ir. Anas Ma’ruf (Institut Teknologi Bandung, Indonesia). 

In closing, we hope that readers find this volume insightful and enriching. Our 
sincere appreciation goes to Springer Lecture Notes of Mechanical Engineering for 
their invaluable support in bringing this publication to life. Additionally, we extend 
our heartfelt thanks to the conference organizers and the dedicated members of 
the Conference Committee, whose tireless efforts made iMEC-APCOMS 2024 a 
resounding success. 

Pekan, Malaysia 
Pekan, Malaysia 
Surakarta, Indonesia 
London, UK 

Siti Nadiah Mohd Saffe 
Siti Zubaidah Ismail 
Cucuk Nur Rosyidi 

Mohammad Osman Tokhi
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The Support Vector Regression Method 
with the Grid Search Algorithm 
in Forecasting Sales of Milk Product 

Nailah Khalishah Auliyaanisa, Rina Fitriana, and Elfira Febriani Harahap 

Abstract The sale of dairy products has always been in the top five with the highest 
sales value from 2021 to early 2024, although the monthly sales value of the dairy 
product is quite fluctuating. There was a problem in predicting demand that was 
less accurate compared to actual demand in the market, which then had a significant 
impact on the company’s operations. The analysis of the forecast of the sale of 
dairy products has become crucial with the aim of avoiding a shortage or surplus of 
supplies that could affect the performance of the warehouse and the quality of the 
service. The objective of the study is to model the sales experience in the first five 
months of 2024 using the Support Vector Regression (SVR) method, analyze the 
accuracy of predictions, and create a dashboard of prediction results using Power 
Business Intelligence (Power BI) software, and verify and validate the research that 
has been done. Based on calculations with SVR, the best kernel obtained is the Linear 
kernel with a Mean Absolute Percentage Error (MAPE) value on the training data of 
1.749% which belongs to the category of highly accurate predictions and the value 
of the determination coefficient of 0.98, whereas for the data testing, the result of 
the Mean Absolute Percentage Error (MAPE) of 0.843%. which falls into the very 
accurate forecasting category and the determining coefficient value of 0.794 so it can 
be concluded that the predictive model capabilities used can be effectively applied 
to the prediction of the sale of dairy products. 

Keywords Sales forecasting · Support vector regression · Grid search · Power 
business intelligence
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1 Introduction 

Inventory management is a process where inventory items are stored in warehouses or 
other storage areas, in this process an item is received, tracked, audited, and managed 
to fulfill orders [1]. Inventory management is an activity that determines the level and 
composition of inventory, raw materials, and manufactured goods or products so that 
companies can control their production and sales processes effectively and efficiently 
[2]. Sales forecasting is an effort to reduce the chance of problems in actual conditions 
that will occur in the future based on previous estimates [3]. Sales forecasting has 
a role in decision-making in manufacturing and service companies. By forecasting 
sales, companies can predict uncertain events and mitigate risk [4]. Sales forecasting 
is very important for many companies because it determines production planning, 
inventory, and many other aspects of a company’s existing operations. Therefore, 
companies are always looking for ways to get more accurate sales predictions [5]. 

Several methods can be used to perform demand forecasting. One of them is to 
use the method of SVR. Based on research that has been conducted by [6], demand 
forecasting is carried out using the method of SVR by using sales data of 3 types of 
bread with data types time series. In research conducted by [7] demand forecasting 
was carried out on three types of onion seeds. In this study, calculations were carried 
out using the method Holt-Winters and SVR. It was found that the method used could 
provide an accurate estimate for all three types of leek seed varieties. Further on the 
research conducted by [8] forecasting water demand in urban areas and for individual 
consumption in the city of Milan. This research was conducted using a methodical 
approach SVR. Based on the results of data processing, it can be concluded that 
there is an increase in the accuracy of the forecasting value of water demand in the 
city of Milan. In addition, this method is also often used in forecasting types that 
have a non-linear distribution such as forecasting the number of confirmed cases 
of COVID-19 [9], support vector machines produce better results compared to both 
time series methods and artificial neural networks [10], in predicting the value of 
stock indices [11], forecast demand for long-sleeved shirts ARIMA (Autoregressive 
Integrated Moving Average) model [12], Prediction is using the Machine Learning 
methods, namely the SVR algorithm [13], and predicting currency exchange rates 
[14]. 

In addition, based on research that has previously been carried out comparing 
various forecasting methods, the SVR method is proven to have a better level of 
forecasting accuracy compared to other methods, as seen in research [15] which 
compares the SVR method with the ARIMA method. In [16] the research compares 
the performance of the SVR method and Artificial Neural Network (ANN). Inventory 
information system proposals are made to provide information on the availability 
of goods and spare parts that need maintenance [17]. This research compares the 
SVR method with the Artificial Neural Network (ANN) method method [18], in 
research [19] which compares forecasting using the Triple Exponential algorithm 
Smoothing (TES) with SVR method, and in study [20] which compared Simple 
Linear Regression method with SVR. The results of previous studies showed that
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forecasting results using the SVR method had better accuracy than other methods. 
Besides that, the Support Vector Regression method is suitable for random data types 
or data with non-linear types [21]. Key findings reveal a correlation between defects 
and varying colors as identified by the Apriori algorithm [22]. 

The company currently faces issues with demand forecasting, resulting in inac-
curacies compared to actual market demand. This leads to the company needing to 
supply additional products, as actual demand often exceeds forecasted values. These 
forecasting errors impact the company significantly, causing inventory shortages and 
excesses. This product shortage and excess stock mainly occurs in dairy products 
because demand is very high and has always been in the top five with the highest sales 
value and quite fluctuating. This study aims to improve demand forecasting using 
the Support Vector Regression (SVR) method, known for its suitability in short-to-
medium-term forecasting and its proven accuracy. The goal is to model sales for 
the first five months of 2024 using the Support Vector Regression method, analyze 
forecasting accuracy, validate the results against actual sales, and create visual data 
dashboards with Power Business Intelligence (Power BI). 

2 Literature Review 

2.1 Support Vector Regression 

Support Vector Regression (SVR) is the application of the method SVM used in 
regression cases. SVR methods can be applied to data Time Series, data that is not 
normally distributed and data that is not linear [9]. The purpose of using the SVR 
algorithm is to determine the dividing line called the best Hyperplane. The best 
hyperplane can be found by measuring the margin value with the hyperplane. The 
margin is the distance value of the hyperplane with the value of the support vector. 
Value Support vector is the closest data from the margin [6]. SVR function can be 
formulated in the following equation: 

f(x) = 
I∑

i= 1

(
ai − a∗ 

i

)
K(xi, x) + b (1)  

where: 

ai − a∗
i Multiplier Langrange 

K(xi, x) Kernel functions 
b Constant.
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2.2 Kernel 

Support Vector Regression can be modified by transforming kernel functions. A 
kernel function is a function that maps data features from a low initial dimension to a 
higher dimension [10]. There are various types of carnels, namely linear, polynomial, 
Radial Basis Function (RBF), and sigmoid. Here is the formula for each kernel type 
[14]: 

1. Kernel Linear 

K(x, y) = xT y + c (2)  

2. Kernel Polynomial 

K(x, y) = (
axT y + c

)d 
(3) 

3. Kernel Radial Basis Function 

K(x, y) = exp
(−y‖x − y‖2) (4) 

4. Kernel Sigmoid 

K(x, y) = tanh(y X  ∗ Y + c) (5) 

2.3 Grid Search Algorithm 

To obtain an SVR model with optimal C, ε, and γ parameters, the grid search algorithm 
tries to combine parameters one by one and compare the smallest error values of each 
parameter [10]. GridSearchCV is a method for selecting combinations of models 
and hyperparameters that tests each combination and performs validation for each 
combination. This method automatically validates each combination of model and 
hyperparameter so as to save processing time [11]. Here are the inputs, processes, 
along with Output GridSearch algorithm.
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Input: Time Series {xi}n i = 1, xi ∈ Rd 

Output: Optimal Kernel Parameters 

1. while validation error ≥ 0 do  
2. Init, kernels; Lag kx, ky p // sample from grid 

3. X →
{[

x(1) i , . . . .,  x(1) i−p, x
(d) 
i , . . . .,  x(d) i−p

]}n−1 

i= p+1 
// AR format 

4. Y ← {[
xi+1

]}n−1 
i = p+1 // one step ahead 

5. K(X ) ← X, K(Y) ← Y // matrices kernels 
6. H, A ← (K(X ), K()Y), // Eigen-Decomposition Equation. 

2.4 Measurement of Forecasting Results 

After getting the best parameter results, calculations are made on evaluation metrics, 
such as Mean Absolute Percentage Error (MAPE) and and R-squared

(
R2

)
. The  

MAPE equation can be formulated as follows [23]: 

MAPE = 
1 

m

∑∣∣∣∣
Yi − Xi 

Yi

∣∣∣∣ (6) 

where: 

Yi Actual demand in period i 
Xi Forecasting demand in period i 
m Number of periods. 

In addition, stiffened R-Squared calculations
(
R2

)
as coefficient of determina-

tion. Values can indicate the goodness of the model R2 [12]. The equation can be 
formulated as follows R2 [24]. 

R2 = 1 −
∑m 

i = 1(Xi − Yi)
2

∑m 
i = 1

(
Y − Yi

)2 (7) 

where [12]: 

R2 Regression line coefficient of determination 
Xi Value actual non-free modifiers on era i 
Yi Value non-free modifier predictions on era i 
Y Nilah average non-free modifier.



16 N. K. Auliyaanisa et al.

3 Method  

At the research stage which can be seen on Fig. 1, input data on dairy product sales 
from 2021 to 2023 was carried out. After that, data preprocessing is carried out, 
which consists of checking the missing data, dividing the data set into training data 
and testing data, determination of independent (X) and dependent (Y) variables, and 
normalizing data. Then data processing is carried out using the SVR method. In this 
process, the Gridsearch algorithm is used to determine the best parameter turning 
value on each kernel. The results of this forecasting will show MAPE and R-squared 
values for testing data and training data. Then demand forecasting is carried out for 
the next 5 months in the early 2024 using kernel types with the best MAPE and 
R-squared values. Then the forecasting results will be visualized on the dashboard 
using Power BI software. 

Fig. 1 Research method
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4 Results and Discussion 

The data processing process that will be carried out consists of conducting input 
and preprocessing stages of sales data, sharing training and testing data, modeling 
Support Vector Regression using the GridSearch algorithm to find the best parame-
ters, evaluating accuracy with MAPE and R-Squared, and forecasting results for the 
next 5 months. Followed by designing dashboards using Power BI. 

In data processing, Descriptive Analysis is carried out which aims to obtain an 
overview or characteristics of dairy product sales data. The results of the descriptive 
analysis of dairy product sales are presented in Table 1. 

Based on the calculation results in Table 1, information can be obtained regarding 
descriptive analysis of the data. This provides a fairly representative picture of the 
distribution of data. Thus, the results of the above descriptive analysis can provide 
a deeper understanding of the characteristics and distribution of the total number of 
dairy product sales during the time period reviewed. 

At the next stage, pre-processing data is done to convert the original data into a 
format suitable for use as input in prediction models. In addition, this process aims 
to improve the accuracy of analysis results and reduce the required computational 
time [12]. Pre-processing Data includes checking missing data, dividing data sets into 
training data (Training) and test data (Testing), determination of independent (X) and 
dependent (Y) variables, and normalizing data. In conducting model development 
using the method, the dataset will be separated into two parts, namely into data 
Training and Testing, where 80% of the dataset will be allocated to the Training, 
while 20% will be used for parts Testing. 80% of the total data is used as datasets 
Training, which includes sales data from January 2021 to April 2023, while the 
remaining 20% is used as a dataset Testing, which runs from May 2023 to December 
2023. 

Plot the results of data sharing Training and data Testing As can be seen in Fig. 2, 
this graph displays two lines representing two different sets of data. Data Training or 
29 data for 29 months, shown in a blue line and for data Testing or test data as much 
as 8 data for 8 months, displayed in orange line. In the next stage, determination 
of research variables is carried out. This research is a research using Supervised 
Learning then used variables Input and Output [11]. The variable ‘x’ is used as the 
input variable used in forecasting. The value of variable ‘x’ is obtained from the data 
index and is transformed into a 2-dimensional matrix to fit the shape required in doing 
modeling, so it is made with the formula [−1, 1], The variable ‘y’ is used as a variable 
output or the target to be predicted. After that, data normalization is carried out. In this 
study, a data normalization process was carried out using Library StandardScaller

Table 1 Analysis descriptive 

Count Mean Std Min 25% 50% 75% Max 

Total 
value 

37 5885.16 1037.35 4134 4810 6234 6766 7215 
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Fig. 2 Data training and testing 

and MinMaxScaller. Preprocessing method known as StandardScaler done to prevent 
data from having too high a value compared to other values, which can lead to an 
unintended training process [25]. 

Once done Pre-processing the data, the next stage is to determine the best turning 
parameters. This stage is done to get optimal parameters on each kernel which will 
later be applied to the model Support Vector Regression [12]. In this study, the best 
parameters in the kernel function were obtained using an algorithm grid search. 
Algorithm Grid Search used by trying multiple parameter values over a specific 
range to build hyperplane [13]. There are various types of kernel, namely linear, 
polynomial, radial basis function (RBF), and sigmoid. The results of the evaluation 
of the best hyperplane parameters and MAPE values for each kernel type in the 
training data can be seen in Table 2.

Based on Table 2, it can be concluded that Based on the results of MAPE and 
R-squared as the deterimination coefficient, the Linear kernel type has a parameter 
value hyperplane best with the lowest MAPE is as high as 1.749% which belongs to 
the category of highly accurate forecasting and the value of the coefficient of deter-
mination as much as 0.98 which can be concluded that the ability of the forecasting 
model used is good [12, 26]. 

In the next stage, an evaluation of forecasting is carried out using testing data 
whose results can be seen in Table 3.

Based on Table 3, it can be concluded that Based on the results of MAPE and 
R-squared as the determination coefficient, the Linear kernel type has a parameter 
value hyperplane best with the lowest MAPE is as high as 0.843%. which belongs 
to the category of highly accurate forecasting and the value of the coefficient of 
determination amounting to 0.794 which can be concluded that the ability of the
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Table 2 MAPE value and R-squared data training 

No Kernel type Parameter Best value MAPE 
(%) 

R-squared 

1 Kernel linear C (cost) 0.1 1.749 0.980 

ε (epsilon) 0.5 

2 Kernel polynomial C (cost) 10 2.157 0.973 

ε (epsilon) 0.0001 

d (degree) 2 

3 Kernel radial basis function C (cost) 100 6.49 0.786 

ε (epsilon) 0.001 

γ (gamma) 0.00001 

4 Kernel sigmoid C (cost) 1 15.96 -0.022 

ε (gamma) 0.00001

Table 3 MAPE value and R-squared data training 

No Kernel type Parameter Best value MAPE (%) R-squared 

1 Kernel linear C (cost) 0.1 0.843 0.794 

ε (epsilon) 0.5 

2 Kernel polynomial C (cost) 10 1..33 0.436 

ε (epsilon) 0.0001 

d (degree) 2 

3 Kernel radial basis function C (cost) 100 13.82 -37.76 

ε (epsilon) 0.001 

γ (gamma) 0.00001 

4 Kernel sigmoid C (cost) 1 17.87 -55.463 

ε (gamma) 0.00001

forecasting model used is good [12, 26]. At the next stage, the forecasting results 
were plot using the kernel with the best parameter value previously obtained, namely 
by using the Linear Kernel with the best C parameter value of 0.1, the best ε value 
of 0.05. The plot of forecasting results can be seen in Fig. 3.

At the final stage of the dairy sales forecasting process, revalidation of the total 
actual sales value in 2024 sales is carried out. The following is a comparison between 
the forecasting value of sales and actual sales for February and March 2024 can be 
seen in Table 4.

Based on Table  4, It can be stated that the results of sales forecasting using 
the Support Vector Regression method are considered better in forecasting dairy 
product requests at PT XYZ because the average difference between actual sales and 
prediction value is only 30 cans of milk. In the last stage, data visualization is carried 
out using Power BI software. This is done to make it easier to read data and when
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Fig. 3 Sales forecasting

Table 4 Predictions versus current milk sales 2024 

Month Prediction with support vector regression method Actual sales 

January 7256 7218 

February 7298 7258 

March 7339 7316 

April 7378 7359

the Company wants to pre-order or order products to suppliers, it can immediately 
see on the existing dashboard. 

Figure 4 is an overall visualization of the Demand Planning Dashboard containing 
information related to year, month, and product SKU numbers that allow users to 
select a specific time period to view sales data and sales forecasting. Data is presented 
in graphic and numeric formats, providing ease in reading and analyzing information.

4.1 Verification and Validation 

4.1.1 Verification 

As a form of verification, the company has conducted an evaluation that shows that the 
Support Vector Regression method provides better results than previous forecasting 
methods that have been used. This evaluation is based on a comparison of sales
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Fig. 4 Visualization of the entire dashboard

forecasting results between the current method, forecasting results with the Support 
Vector Regression method, and acute sales value in February and March 2024. Based 
on the calculation of the difference between forecasting values and actual sales, it can 
be concluded that the Support Vector Regression method gives much better results. 
This is proven by the calculation of the difference between prediction and actual 
sales using the Support Vector Regression method, there is only an average sales 
difference of 30 cans. 

4.1.2 Validation 

After validation, the company concluded that SVR is better at forecasting than previ-
ously used methods. In-depth evaluation shows predictions that are more accurate 
and closer to actual values, with a much smaller margin. The company recognized 
the potential of SVR in improving forecasting accuracy and planned custom dash-
boards with Power BI for data visualization, although its implementation took time 
as it involved coordination with technology teams and related departments. 

4.2 The Role of Business Intelligence Systems 

Business Intelligence Systems have an important role in two main aspects, namely 
updating forecasting methods and creating dashboards or databases. In the case of 
forecasting method updates, the system can enable more efficient inventory plan-
ning by accurately identifying demand trends, thereby reducing the costs and risks
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Role of Business 
Intelligence Systems 

Efficienty on Supply Planning 

Cost and Risk Reduc�on 

Real-�me Data Integra�on and Informa�on 
Delivery 

Algorithm Performance Monitoring 

Update on Forecast 
Method 

Dashboard Creation 

Fig. 5 The role of business intelligence systems 

associated with improper inventory. In addition, in terms of creating dashboards or 
databases, this system can integrate data from various sources to provide real-time 
information, as well as monitor the performance of forecasting algorithms to ensure 
an optimal level of forecasting accuracy. Business Intelligence systems play a role 
in optimizing smarter planning and decision-making strategies for companies [27]. 
The role of business intelligence systems can be seen in Fig. 5. 

5 Conclusion 

Based on the results of forecasting using the Support Vector Regression method, it 
was obtained that the Support Vector Regression model with the Linear Kernel with 
the best C parameter value was 0.1 and the best ε value was 0.5, is the model with 
best forecasting accuracy value with the lowest MAPE in experiments on training 
data which is 1.749% and the value of R-Squared is 0.98 that is included in the 
category of very accurate forecasting. For testing data, MAPE results are obtained 
of 0.843% and the value of the R-squared is 0.794 which can be concluded that the 
ability of the forecasting model used is good. Based on the results of verification and 
revalidation of the actual sales value of milk products in sales in 2024, there is only 
a difference of 30 cans of milk. This is considered much better than the forecasting 
results used by the company currently. It can be concluded that the Support Vector 
Regression method more accurate forecasting results than the method currently used 
by the company. The company also plans to develop a special dashboard that uses the 
Power BI platform. Data visualization is carried out using Power BI software that can 
visualize sales forecasting data, total sales data, and information about merchants 
and product categories. Equipped with year and month filter options that make it 
easy to read detailed data.
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